Comparison of intraocular pressure in New Zealand White rabbits measured using rebound and applanation tonometers and four different methods of physical restraint.
S Okur, L E Yanmaz, M G Senocak, U Ersöz, A Gölgeli, F Turgut, O T Orhun, Y Kocaman
{"title":"Comparison of intraocular pressure in New Zealand White rabbits measured using rebound and applanation tonometers and four different methods of physical restraint.","authors":"S Okur, L E Yanmaz, M G Senocak, U Ersöz, A Gölgeli, F Turgut, O T Orhun, Y Kocaman","doi":"10.1080/00480169.2023.2224277","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To compare intraocular pressure (IOP) measurements obtained in rabbits using rebound (TV) and applanation (TPV) tonometers with four different methods of physical restraint.</p><p><strong>Methods: </strong>A total of 20 New Zealand White rabbits (40 eyes) were included in this study. IOP readings were obtained from both eyes using the two different tonometers. The rabbits were placed on a table and restrained by wrapping in a cloth (Method I), by scruffing with rear support (Method II), by wrapping in a cloth and cupped in the hands (Method III), or by a box restrainer (Method IV).</p><p><strong>Results: </strong>The mean IOP measurement obtained by TPV was higher than that obtained with the TV for all handling methods. Mean differences (TV-TPV, in mmHg) in IOP were -5.3 (95% Cl = -6.5 to -4.1) for Method 1, -4.7 (95% Cl = -6.2 to -3.29) for Method II, -4.9 (95% Cl = -6.2 to -3.7) for Method III and -7.6 (95% Cl = -9.2 to -5.9) for Method IV. Using the TV tonometer, mean IOP for Method IV was higher than for Method I (mean difference 2.1 (95% Cl = 1.1-3.1)), whereas using the TPV tonometer, mean IOP for Method IV was significantly higher than Method I, II, and III (mean differences: 4.4 (95% Cl = 2.6-5.9), 3.7 (95% Cl = 2-5.3) and 3.8 (95% Cl = 2-5.4), respectively). According to Bland-Altman plots, IOP readings for TPV tended to be higher than those for TV with all handling methods, but with a lack of agreement. The mean difference and 95% limits of agreement for the differences between TV and TPV were -5.4 mmHg (-12.5-1.9 mmHg), -4.7 mmHg (-12.9-3.5 mmHg), -4.9 mmHg (-12-2.2 mmHg), and -7.5 mmHg (-17.4-2.3 mmHg), with Methods I, II, III, and IV, respectively. Comparing TV and TPV, only 7.5%, 12.5%, 27.5%, and 15% of IOP measurements from 20 rabbits were within the range considered clinically acceptable for IOP (± 2 mmHg) for Method I, II, III, and IV, respectively.</p><p><strong>Conclusion and clinical relevance: </strong>In conclusion, the physical restraint method should be recorded when IOP is measured in rabbits, and TV and TPV tonometers cannot be used interchangeably (high bias and low proportion of measurements within ± 2 mmHg).</p>","PeriodicalId":19322,"journal":{"name":"New Zealand veterinary journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand veterinary journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00480169.2023.2224277","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: To compare intraocular pressure (IOP) measurements obtained in rabbits using rebound (TV) and applanation (TPV) tonometers with four different methods of physical restraint.
Methods: A total of 20 New Zealand White rabbits (40 eyes) were included in this study. IOP readings were obtained from both eyes using the two different tonometers. The rabbits were placed on a table and restrained by wrapping in a cloth (Method I), by scruffing with rear support (Method II), by wrapping in a cloth and cupped in the hands (Method III), or by a box restrainer (Method IV).
Results: The mean IOP measurement obtained by TPV was higher than that obtained with the TV for all handling methods. Mean differences (TV-TPV, in mmHg) in IOP were -5.3 (95% Cl = -6.5 to -4.1) for Method 1, -4.7 (95% Cl = -6.2 to -3.29) for Method II, -4.9 (95% Cl = -6.2 to -3.7) for Method III and -7.6 (95% Cl = -9.2 to -5.9) for Method IV. Using the TV tonometer, mean IOP for Method IV was higher than for Method I (mean difference 2.1 (95% Cl = 1.1-3.1)), whereas using the TPV tonometer, mean IOP for Method IV was significantly higher than Method I, II, and III (mean differences: 4.4 (95% Cl = 2.6-5.9), 3.7 (95% Cl = 2-5.3) and 3.8 (95% Cl = 2-5.4), respectively). According to Bland-Altman plots, IOP readings for TPV tended to be higher than those for TV with all handling methods, but with a lack of agreement. The mean difference and 95% limits of agreement for the differences between TV and TPV were -5.4 mmHg (-12.5-1.9 mmHg), -4.7 mmHg (-12.9-3.5 mmHg), -4.9 mmHg (-12-2.2 mmHg), and -7.5 mmHg (-17.4-2.3 mmHg), with Methods I, II, III, and IV, respectively. Comparing TV and TPV, only 7.5%, 12.5%, 27.5%, and 15% of IOP measurements from 20 rabbits were within the range considered clinically acceptable for IOP (± 2 mmHg) for Method I, II, III, and IV, respectively.
Conclusion and clinical relevance: In conclusion, the physical restraint method should be recorded when IOP is measured in rabbits, and TV and TPV tonometers cannot be used interchangeably (high bias and low proportion of measurements within ± 2 mmHg).
期刊介绍:
The New Zealand Veterinary Journal (NZVJ) is an international journal publishing high quality peer-reviewed articles covering all aspects of veterinary science, including clinical practice, animal welfare and animal health.
The NZVJ publishes original research findings, clinical communications (including novel case reports and case series), rapid communications, correspondence and review articles, originating from New Zealand and internationally.
Topics should be relevant to, but not limited to, New Zealand veterinary and animal science communities, and include the disciplines of infectious disease, medicine, surgery and the health, management and welfare of production and companion animals, horses and New Zealand wildlife.
All submissions are expected to meet the highest ethical and welfare standards, as detailed in the Journal’s instructions for authors.