Sean M Farrell, Vivek Boominathan, Nathaniel Raymondi, Ashutosh Sabharwal, Ashok Veeraraghavan
{"title":"CoIR: Compressive Implicit Radar.","authors":"Sean M Farrell, Vivek Boominathan, Nathaniel Raymondi, Ashutosh Sabharwal, Ashok Veeraraghavan","doi":"10.1109/TPAMI.2023.3301553","DOIUrl":null,"url":null,"abstract":"<p><p>Using millimeter wave (mmWave) signals for imaging has an important advantage in that they can penetrate through poor environmental conditions such as fog, dust, and smoke that severely degrade optical-based imaging systems. However, mmWave radars, contrary to cameras and LiDARs, suffer from low angular resolution because of small physical apertures and conventional signal processing techniques. Sparse radar imaging, on the other hand, can increase the aperture size while minimizing the power consumption and read out bandwidth. This paper presents CoIR, an analysis by synthesis method that leverages the implicit neural network bias in convolutional decoders and compressed sensing to perform high accuracy sparse radar imaging. The proposed system is data set-agnostic and does not require any auxiliary sensors for training or testing. We introduce a sparse array design that allows for a 5.5× reduction in the number of antenna elements needed compared to conventional MIMO array designs. We demonstrate our system's improved imaging performance over standard mmWave radars and other competitive untrained methods on both simulated and experimental mmWave radar data.</p>","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"PP ","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TPAMI.2023.3301553","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Using millimeter wave (mmWave) signals for imaging has an important advantage in that they can penetrate through poor environmental conditions such as fog, dust, and smoke that severely degrade optical-based imaging systems. However, mmWave radars, contrary to cameras and LiDARs, suffer from low angular resolution because of small physical apertures and conventional signal processing techniques. Sparse radar imaging, on the other hand, can increase the aperture size while minimizing the power consumption and read out bandwidth. This paper presents CoIR, an analysis by synthesis method that leverages the implicit neural network bias in convolutional decoders and compressed sensing to perform high accuracy sparse radar imaging. The proposed system is data set-agnostic and does not require any auxiliary sensors for training or testing. We introduce a sparse array design that allows for a 5.5× reduction in the number of antenna elements needed compared to conventional MIMO array designs. We demonstrate our system's improved imaging performance over standard mmWave radars and other competitive untrained methods on both simulated and experimental mmWave radar data.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.