{"title":"Isolating Signals in Passive Non-Line-of-Sight Imaging using Spectral Content.","authors":"Connor Hashemi, Rafael Avelar, James Leger","doi":"10.1109/TPAMI.2023.3301336","DOIUrl":null,"url":null,"abstract":"<p><p>In real-life passive non-line-of-sight (NLOS) imaging there is an overwhelming amount of undesired scattered radiance, called clutter, that impedes reconstruction of the desired NLOS scene. This paper explores using the spectral domain of the scattered light field to separate the desired scattered radiance from the clutter. We propose two techniques: The first separates the multispectral scattered radiance into a collection of objects each with their own uniform color. The objects which correspond to clutter can then be identified and removed based on how well they can be reconstructed using NLOS imaging algorithms. This technique requires very few priors and uses off-the-shelf algorithms. For the second technique, we derive and solve a convex optimization problem assuming we know the desired signal's spectral content. This method is quicker and can be performed with fewer spectral measurements. We demonstrate both techniques using realistic scenarios. In the presence of clutter that is 50 times stronger than the desired signal, the proposed reconstruction of the NLOS scene is 23 times more accurate than typical reconstructions and 5 times more accurate than using the leading clutter rejection method.</p>","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"PP ","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TPAMI.2023.3301336","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In real-life passive non-line-of-sight (NLOS) imaging there is an overwhelming amount of undesired scattered radiance, called clutter, that impedes reconstruction of the desired NLOS scene. This paper explores using the spectral domain of the scattered light field to separate the desired scattered radiance from the clutter. We propose two techniques: The first separates the multispectral scattered radiance into a collection of objects each with their own uniform color. The objects which correspond to clutter can then be identified and removed based on how well they can be reconstructed using NLOS imaging algorithms. This technique requires very few priors and uses off-the-shelf algorithms. For the second technique, we derive and solve a convex optimization problem assuming we know the desired signal's spectral content. This method is quicker and can be performed with fewer spectral measurements. We demonstrate both techniques using realistic scenarios. In the presence of clutter that is 50 times stronger than the desired signal, the proposed reconstruction of the NLOS scene is 23 times more accurate than typical reconstructions and 5 times more accurate than using the leading clutter rejection method.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.