Xiao Gu;Fani Deligianni;Jinpei Han;Xiangyu Liu;Wei Chen;Guang-Zhong Yang;Benny Lo
{"title":"Beyond Supervised Learning for Pervasive Healthcare","authors":"Xiao Gu;Fani Deligianni;Jinpei Han;Xiangyu Liu;Wei Chen;Guang-Zhong Yang;Benny Lo","doi":"10.1109/RBME.2023.3296938","DOIUrl":null,"url":null,"abstract":"The integration of machine/deep learning and sensing technologies is transforming healthcare and medical practice. However, inherent limitations in healthcare data, namely \n<italic>scarcity</i>\n, \n<italic>quality</i>\n, and \n<italic>heterogeneity</i>\n, hinder the effectiveness of supervised learning techniques which are mainly based on pure statistical fitting between data and labels. In this article, we first identify the challenges present in machine learning for pervasive healthcare and we then review the current trends beyond fully supervised learning that are developed to address these three issues. Rooted in the inherent drawbacks of empirical risk minimization that underpins pure fully supervised learning, this survey summarizes seven key lines of learning strategies, to promote the generalization performance for real-world deployment. In addition, we point out several directions that are emerging and promising in this area, to develop data-efficient, scalable, and trustworthy computational models, and to leverage multi-modality and multi-source sensing informatics, for pervasive healthcare.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"42-62"},"PeriodicalIF":17.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10189101/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of machine/deep learning and sensing technologies is transforming healthcare and medical practice. However, inherent limitations in healthcare data, namely
scarcity
,
quality
, and
heterogeneity
, hinder the effectiveness of supervised learning techniques which are mainly based on pure statistical fitting between data and labels. In this article, we first identify the challenges present in machine learning for pervasive healthcare and we then review the current trends beyond fully supervised learning that are developed to address these three issues. Rooted in the inherent drawbacks of empirical risk minimization that underpins pure fully supervised learning, this survey summarizes seven key lines of learning strategies, to promote the generalization performance for real-world deployment. In addition, we point out several directions that are emerging and promising in this area, to develop data-efficient, scalable, and trustworthy computational models, and to leverage multi-modality and multi-source sensing informatics, for pervasive healthcare.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.