{"title":"A Novel Screwless Modification of the Khoury Plate Technique using an Innovative Bone Adhesive Formulated from Underwater Biomimetic Marine Proteins.","authors":"Michael A Pikos, Richard J Miron","doi":"10.11607/prd.6442","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, the Khoury plate technique has been widely utilized with much success to facilitate bone augmentation in critically deficient bone areas. Simply, the technique includes harvesting autogenous bone plates and utilizing them with external screw fixation. The rigidity of the bone plates enclosing the bony defect on both the buccal and lingual surfaces allows for tension-free bone remodeling to occur, favoring an ideal bone-forming environment. Following, a 4- to 6-month healing period, a flap is raised, screws may be removed, and implants are placed. With advancements made in tissue engineering, a novel mineral-organic resorbable bone adhesive (MORBA) formulated from underwater biomimetic marine proteins has recently been utilized for immediate bone-to-bone or bone-to-metal fixation. MORBA is a synthetic, injectable, self-setting, and resorbable load-bearing adhesive biomaterial that exhibits over 300 pounds of fixation strength. The unique adhesive properties of MORBA enable it to immediately stabilize dental implants into host bone. The present article describes a novel modification of the Khoury plate technique that utilizes MORBA as a substitute for screws during bone plate fixation. A step-by-step protocol is described that utilizes this novel biomaterial, favoring a more biologic approach to this conventional technique. This novel modification is surgically easier to conduct and is a more biocompatible option that avoids screw fixation and removal.</p>","PeriodicalId":54948,"journal":{"name":"International Journal of Periodontics & Restorative Dentistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Periodontics & Restorative Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/prd.6442","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past two decades, the Khoury plate technique has been widely utilized with much success to facilitate bone augmentation in critically deficient bone areas. Simply, the technique includes harvesting autogenous bone plates and utilizing them with external screw fixation. The rigidity of the bone plates enclosing the bony defect on both the buccal and lingual surfaces allows for tension-free bone remodeling to occur, favoring an ideal bone-forming environment. Following, a 4- to 6-month healing period, a flap is raised, screws may be removed, and implants are placed. With advancements made in tissue engineering, a novel mineral-organic resorbable bone adhesive (MORBA) formulated from underwater biomimetic marine proteins has recently been utilized for immediate bone-to-bone or bone-to-metal fixation. MORBA is a synthetic, injectable, self-setting, and resorbable load-bearing adhesive biomaterial that exhibits over 300 pounds of fixation strength. The unique adhesive properties of MORBA enable it to immediately stabilize dental implants into host bone. The present article describes a novel modification of the Khoury plate technique that utilizes MORBA as a substitute for screws during bone plate fixation. A step-by-step protocol is described that utilizes this novel biomaterial, favoring a more biologic approach to this conventional technique. This novel modification is surgically easier to conduct and is a more biocompatible option that avoids screw fixation and removal.
期刊介绍:
The International Journal of Periodontics & Restorative Dentistry will
publish manuscripts concerned with all aspects of clinical periodontology,
restorative dentistry, and implantology. This includes pertinent research
as well as clinical methodology (their interdependence and relationship
should be addressed where applicable); proceedings of relevant symposia
or conferences; and quality review papers. Original manuscripts are considered for publication on the condition that they have not been published
or submitted for publication elsewhere.