Rachel Mawer, Stijn P Bruneel, Ine S Pauwels, Jelger Elings, Eliezer Pickholtz, Renanel Pickholtz, Matthias Schneider, Johan Coeck, Peter L M Goethals
{"title":"Individual variation in the habitat selection of upstream migrating fish near a barrier.","authors":"Rachel Mawer, Stijn P Bruneel, Ine S Pauwels, Jelger Elings, Eliezer Pickholtz, Renanel Pickholtz, Matthias Schneider, Johan Coeck, Peter L M Goethals","doi":"10.1186/s40462-023-00414-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Migration is a vital element of the life cycle of many freshwater fish species but is increasingly hampered globally by riverine barriers. Fish passes are a common approach to enable migration past barriers but are often ineffective. More knowledge is required on fish behaviour as they approach barriers such as habitat preferences.</p><p><strong>Methods: </strong>We evaluate the habitat selection of two upstream migrating fish species, barbel Barbus barbus and grayling Thymallus thymallus, at a hydropower plant in southern Germany, considering individual variation and population trends. Fish were tracked via fine-scale 2D acoustic telemetry in 2018 during their spawning migration. Step selection functions were used to evaluate selection of hydraulic parameters by the fish for a time step of 20 s. Exploratory models were built via model selection for each individual fish, to evaluate the extent of individual variation in model structure. A population model was developed for each species by averaging coefficients from individual models to describe general trends. The extent of individual variation was determined and confidence intervals for the population model coefficients were calculated.</p><p><strong>Results: </strong>Fish varied greatly in individual model structure though common terms were apparent in both species, such as depth, flow velocity, the angular difference between fish and velocity, and the logarithm of the step length. Final population models for barbel included several parameters describing habitat selection and displacement. Barbel selected for faster flows, deeper water, and higher spatial velocity gradients. In addition, they selected to move more with the flow than against. Interactions were also present between habitat parameters, suggesting selection is context dependent. Barbel movement speed also changed with depth, flow velocity and spatial velocity gradient. With grayling, terms often had contrasting effects among individuals and thus general trends could not be distinguished for most terms.</p><p><strong>Conclusion: </strong>Our findings demonstrate habitat selection by upstream migrating fish approaching a fish pass and differences in individual selection which may have an impact on barrier management. Step selection functions are a promising approach and can provide useful insight into habitat selection and movement by migrating freshwater fish in an altered river system.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"11 1","pages":"49"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405436/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-023-00414-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Migration is a vital element of the life cycle of many freshwater fish species but is increasingly hampered globally by riverine barriers. Fish passes are a common approach to enable migration past barriers but are often ineffective. More knowledge is required on fish behaviour as they approach barriers such as habitat preferences.
Methods: We evaluate the habitat selection of two upstream migrating fish species, barbel Barbus barbus and grayling Thymallus thymallus, at a hydropower plant in southern Germany, considering individual variation and population trends. Fish were tracked via fine-scale 2D acoustic telemetry in 2018 during their spawning migration. Step selection functions were used to evaluate selection of hydraulic parameters by the fish for a time step of 20 s. Exploratory models were built via model selection for each individual fish, to evaluate the extent of individual variation in model structure. A population model was developed for each species by averaging coefficients from individual models to describe general trends. The extent of individual variation was determined and confidence intervals for the population model coefficients were calculated.
Results: Fish varied greatly in individual model structure though common terms were apparent in both species, such as depth, flow velocity, the angular difference between fish and velocity, and the logarithm of the step length. Final population models for barbel included several parameters describing habitat selection and displacement. Barbel selected for faster flows, deeper water, and higher spatial velocity gradients. In addition, they selected to move more with the flow than against. Interactions were also present between habitat parameters, suggesting selection is context dependent. Barbel movement speed also changed with depth, flow velocity and spatial velocity gradient. With grayling, terms often had contrasting effects among individuals and thus general trends could not be distinguished for most terms.
Conclusion: Our findings demonstrate habitat selection by upstream migrating fish approaching a fish pass and differences in individual selection which may have an impact on barrier management. Step selection functions are a promising approach and can provide useful insight into habitat selection and movement by migrating freshwater fish in an altered river system.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.