DIA-MS2pep: a library-free framework for comprehensive peptide identification from data-independent acquisition data.

Junjie Hou, Jifeng Wang, Fuquan Yang, Tao Xu
{"title":"DIA-MS2pep: a library-free framework for comprehensive peptide identification from data-independent acquisition data.","authors":"Junjie Hou,&nbsp;Jifeng Wang,&nbsp;Fuquan Yang,&nbsp;Tao Xu","doi":"10.52601/bpr.2022.220011","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying peptides directly from data-independent acquisition (DIA) data remains challenging due to the highly multiplexed MS/MS spectra. Spectral library-based peptide detection is sensitive, but it is limited to the depth of the library and mutes the discovery potential of DIA data. We present here, DIA-MS2pep, a library-free framework for comprehensive peptide identification from DIA data. DIA-MS2pep uses a data-driven algorithm for MS/MS spectrum demultiplexing using the fragments data without the need of a precursor. With a large precursor mass tolerance database search, DIA-MS2pep can identify the peptides and their modified forms. We demonstrate the performance of DIA-MS2pep by comparing it to conventional library-free tools in accuracy and sensitivity of peptide identifications using publicly available DIA datasets of varying samples, including HeLa cell lysates, phosphopeptides, plasma, <i>etc</i>. Compared with data-dependent acquisition-based spectral libraries, spectral libraries built directly from DIA data with DIA-MS2pep improve the accuracy and reproducibility of the quantitative proteome.</p>","PeriodicalId":59621,"journal":{"name":"生物物理学报:英文版","volume":"8 5-6","pages":"253-268"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报:英文版","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2022.220011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying peptides directly from data-independent acquisition (DIA) data remains challenging due to the highly multiplexed MS/MS spectra. Spectral library-based peptide detection is sensitive, but it is limited to the depth of the library and mutes the discovery potential of DIA data. We present here, DIA-MS2pep, a library-free framework for comprehensive peptide identification from DIA data. DIA-MS2pep uses a data-driven algorithm for MS/MS spectrum demultiplexing using the fragments data without the need of a precursor. With a large precursor mass tolerance database search, DIA-MS2pep can identify the peptides and their modified forms. We demonstrate the performance of DIA-MS2pep by comparing it to conventional library-free tools in accuracy and sensitivity of peptide identifications using publicly available DIA datasets of varying samples, including HeLa cell lysates, phosphopeptides, plasma, etc. Compared with data-dependent acquisition-based spectral libraries, spectral libraries built directly from DIA data with DIA-MS2pep improve the accuracy and reproducibility of the quantitative proteome.

Abstract Image

Abstract Image

Abstract Image

DIA-MS2pep:从数据无关的采集数据中进行全面肽鉴定的无库框架。
由于高度复用的质谱/质谱,直接从数据独立采集(DIA)数据中识别肽仍然具有挑战性。基于谱库的多肽检测灵敏度高,但受限于谱库的深度,抑制了对DIA数据的发现潜力。我们在这里提出DIA- ms2pep,一个从DIA数据中进行全面肽鉴定的无库框架。DIA-MS2pep采用数据驱动算法,使用碎片数据进行MS/MS频谱解复用,而不需要前体。DIA-MS2pep通过对前体质量耐受数据库的搜索,可以识别出肽及其修饰形式。我们通过将DIA- ms2pep与传统的无文库工具进行比较,证明了DIA- ms2pep在肽鉴定的准确性和敏感性方面的性能,这些工具使用了公开的DIA数据集,包括HeLa细胞裂解物、磷酸肽、血浆等。与基于数据依赖获取的光谱库相比,使用DIA- ms2pep直接从DIA数据构建的光谱库提高了定量蛋白质组的准确性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
117
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信