{"title":"Fast cross-linking by DOPA2 promotes the capturing of a stereospecific protein complex over nonspecific encounter complexes.","authors":"Jian-Hua Wang, Zhou Gong, Xu Dong, Shu-Qun Liu, Yu-Liang Tang, Xiaoguang Lei, Chun Tang, Meng-Qiu Dong","doi":"10.52601/bpr.2022.220014","DOIUrl":null,"url":null,"abstract":"<p><p>Transient and weak protein-protein interactions are essential to many biochemical reactions, yet are technically challenging to study. Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) provides a powerful tool in the analysis of such interactions. Central to this technology are chemical cross-linkers. Here, using two transient heterodimeric complexes EIN/HPr and EIIA<sup>Glc</sup>/EIIB<sup>Glc</sup> as our model systems, we evaluated the effects of two amine-specific homo-bifunctional cross-linkers with different reactivities. We showed previously that DOPA2 (di-<i>ortho</i>-phthalaldehyde with a di-ethylene glycol spacer arm) cross-links proteins 60-120 times faster than DSS (disuccinimidyl suberate). We found that though most of the intermolecular cross-links of either cross-linker are consistent with the encounter complexes (ECs), an ensemble of short-lived binding intermediates, more DOPA2 intermolecular cross-links could be assigned to the stereospecific complex (SC), the final lowest-energy conformational state for the two interacting proteins. Our finding suggests that faster cross-linking captures the SC more effectively and cross-linkers of different reactivities potentially probe protein-protein interaction dynamics across multiple timescales.</p>","PeriodicalId":59621,"journal":{"name":"生物物理学报:英文版","volume":"8 5-6","pages":"239-252"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166511/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报:英文版","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2022.220014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Transient and weak protein-protein interactions are essential to many biochemical reactions, yet are technically challenging to study. Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) provides a powerful tool in the analysis of such interactions. Central to this technology are chemical cross-linkers. Here, using two transient heterodimeric complexes EIN/HPr and EIIAGlc/EIIBGlc as our model systems, we evaluated the effects of two amine-specific homo-bifunctional cross-linkers with different reactivities. We showed previously that DOPA2 (di-ortho-phthalaldehyde with a di-ethylene glycol spacer arm) cross-links proteins 60-120 times faster than DSS (disuccinimidyl suberate). We found that though most of the intermolecular cross-links of either cross-linker are consistent with the encounter complexes (ECs), an ensemble of short-lived binding intermediates, more DOPA2 intermolecular cross-links could be assigned to the stereospecific complex (SC), the final lowest-energy conformational state for the two interacting proteins. Our finding suggests that faster cross-linking captures the SC more effectively and cross-linkers of different reactivities potentially probe protein-protein interaction dynamics across multiple timescales.