Metal Chelates of Sulfafurazole Azo Dye Derivative: Synthesis, Structure Affirmation, Antimicrobial, Antitumor, DNA Binding, and Molecular Docking Simulation.

IF 4.7 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hoda A El-Ghamry, Rajaa O Al-Ziyadi, Fatmah M Alkhatib, Khadiga M Takroni, Abdalla M Khedr
{"title":"Metal Chelates of Sulfafurazole Azo Dye Derivative: Synthesis, Structure Affirmation, Antimicrobial, Antitumor, DNA Binding, and Molecular Docking Simulation.","authors":"Hoda A El-Ghamry,&nbsp;Rajaa O Al-Ziyadi,&nbsp;Fatmah M Alkhatib,&nbsp;Khadiga M Takroni,&nbsp;Abdalla M Khedr","doi":"10.1155/2023/2239976","DOIUrl":null,"url":null,"abstract":"<p><p>A series of divalent and one trivalent metal chelates of the azo ligand resulting from coupling of sulfafurazole diazonium chloride with resorcinol have been designed and synthesized. Structure investigation of the isolated chelates have been achieved by applying spectroscopic and analytical tools which collaborated to assure the formation of the metal chelates in the molar ratios of 1L: 1M for Ni(II), Co(II), and Fe(III) chelates, where Cu(II) and Zn(II) complexes formed in the ratio 2L : 1M. The geometrical arrangement around the metal canters was concluded from UV-Vis spectra to be octahedral for all metal chelates. The attachment of the ligand to the metal ions took place through the azo group nitrogen and o-hydroxyl oxygen through proton displacement leading to the ligand being in monobasic bidentate binding mode. Antimicrobial and antitumor activities of the interested compounds have been evaluated against alternative microorganisms and cancer cells, respectively, in a trial to investigate their extent of activity in addition to docking studies. The mode of interaction of the compounds with SS-DNA has been examined by UV-Vis spectra and viscosity studies.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2023 ","pages":"2239976"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234726/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic Chemistry and Applications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/2239976","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

A series of divalent and one trivalent metal chelates of the azo ligand resulting from coupling of sulfafurazole diazonium chloride with resorcinol have been designed and synthesized. Structure investigation of the isolated chelates have been achieved by applying spectroscopic and analytical tools which collaborated to assure the formation of the metal chelates in the molar ratios of 1L: 1M for Ni(II), Co(II), and Fe(III) chelates, where Cu(II) and Zn(II) complexes formed in the ratio 2L : 1M. The geometrical arrangement around the metal canters was concluded from UV-Vis spectra to be octahedral for all metal chelates. The attachment of the ligand to the metal ions took place through the azo group nitrogen and o-hydroxyl oxygen through proton displacement leading to the ligand being in monobasic bidentate binding mode. Antimicrobial and antitumor activities of the interested compounds have been evaluated against alternative microorganisms and cancer cells, respectively, in a trial to investigate their extent of activity in addition to docking studies. The mode of interaction of the compounds with SS-DNA has been examined by UV-Vis spectra and viscosity studies.

Abstract Image

Abstract Image

Abstract Image

磺胺呋唑偶氮染料衍生物的金属螯合物:合成、结构确认、抗菌、抗肿瘤、DNA结合及分子对接模拟。
设计并合成了一系列由磺胺呋唑重氮氯与间苯二酚偶联而成的二价和一价三价偶氮配体金属螯合物。通过应用光谱和分析工具对分离的螯合物进行了结构研究,这些工具协作确保了Ni(II), Co(II)和Fe(III)螯合物以1L: 1M的摩尔比形成金属螯合物,其中Cu(II)和Zn(II)配合物以2L: 1M的摩尔比形成。紫外-可见光谱分析表明,金属螯合物在金属中心周围的几何排列为八面体。配体通过偶氮基团氮和邻羟基氧通过质子位移与金属离子结合,导致配体呈单碱双齿结合模式。除了对接研究外,我们还对感兴趣的化合物分别对替代微生物和癌细胞进行了抗菌和抗肿瘤活性评估,以研究它们的活性程度。通过紫外可见光谱和黏度研究考察了化合物与SS-DNA的相互作用模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinorganic Chemistry and Applications
Bioinorganic Chemistry and Applications 化学-生化与分子生物学
CiteScore
7.00
自引率
5.30%
发文量
105
审稿时长
>12 weeks
期刊介绍: Bioinorganic Chemistry and Applications is primarily devoted to original research papers, but also publishes review articles, editorials, and letter to the editor in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信