Synthesis of Prospective Multiple Time Points F-18 FDG PET Images from a Single Scan Using a Supervised Generative Adversarial Network.

IF 1 4区 医学 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Merhnoosh Karimipourfard, Sedigheh Sina, Fereshteh Khodadai Shoshtari, Mehrsadat Alavi
{"title":"Synthesis of Prospective Multiple Time Points F-18 FDG PET Images from a Single Scan Using a Supervised Generative Adversarial Network.","authors":"Merhnoosh Karimipourfard,&nbsp;Sedigheh Sina,&nbsp;Fereshteh Khodadai Shoshtari,&nbsp;Mehrsadat Alavi","doi":"10.1055/a-2026-0784","DOIUrl":null,"url":null,"abstract":"<p><p>The cumulative activity map estimation are essential tools for patient specific dosimetry with high accuracy, which is estimated using biokinetic models instead of patient dynamic data or the number of static PET scans, owing to economical and time-consuming points of view. In the era of deep learning applications in medicine, the pix-to-pix (p2 p) GAN neural networks play a significant role in image translation between imaging modalities. In this pilot study, we extended the p2 p GAN networks to generate PET images of patients at different times according to a 60 min scan time after the injection of F-18 FDG. In this regard, the study was conducted in two sections: phantom and patient studies. In the phantom study section, the SSIM, PSNR, and MSE metric results of the generated images varied from 0.98-0.99, 31-34 and 1-2 respectively and the fine-tuned Resnet-50 network classified the different timing images with high performance. In the patient study, these values varied from 0.88-0.93, 36-41 and 1.7-2.2, respectively and the classification network classified the generated images in the true group with high accuracy. The results of phantom studies showed high values of evaluation metrics owing to ideal image quality conditions. However, in the patient study, promising results were achieved which showed that the image quality and training data number affected the network performance. This study aims to assess the feasibility of p2 p GAN network application for different timing image generation.</p>","PeriodicalId":19238,"journal":{"name":"Nuklearmedizin-nuclear Medicine","volume":"62 2","pages":"61-72"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuklearmedizin-nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2026-0784","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The cumulative activity map estimation are essential tools for patient specific dosimetry with high accuracy, which is estimated using biokinetic models instead of patient dynamic data or the number of static PET scans, owing to economical and time-consuming points of view. In the era of deep learning applications in medicine, the pix-to-pix (p2 p) GAN neural networks play a significant role in image translation between imaging modalities. In this pilot study, we extended the p2 p GAN networks to generate PET images of patients at different times according to a 60 min scan time after the injection of F-18 FDG. In this regard, the study was conducted in two sections: phantom and patient studies. In the phantom study section, the SSIM, PSNR, and MSE metric results of the generated images varied from 0.98-0.99, 31-34 and 1-2 respectively and the fine-tuned Resnet-50 network classified the different timing images with high performance. In the patient study, these values varied from 0.88-0.93, 36-41 and 1.7-2.2, respectively and the classification network classified the generated images in the true group with high accuracy. The results of phantom studies showed high values of evaluation metrics owing to ideal image quality conditions. However, in the patient study, promising results were achieved which showed that the image quality and training data number affected the network performance. This study aims to assess the feasibility of p2 p GAN network application for different timing image generation.

使用监督生成对抗网络从单次扫描合成前瞻性多时间点F-18 FDG PET图像。
累积活动图估计是高精度患者特定剂量学的重要工具,由于经济和耗时的观点,它使用生物动力学模型而不是患者动态数据或静态PET扫描次数来估计。在医学深度学习应用的时代,像素到像素(p2 p) GAN神经网络在成像模式之间的图像转换中发挥着重要作用。在这项初步研究中,我们扩展了p2 p GAN网络,根据注射F-18 FDG后60分钟的扫描时间,生成患者在不同时间的PET图像。在这方面,研究分为两个部分进行:幻影和患者研究。在幻影研究部分,生成图像的SSIM、PSNR和MSE度量结果分别为0.98-0.99、31-34和1-2,微调后的Resnet-50网络对不同时序图像进行了高性能分类。在患者研究中,这些值分别为0.88-0.93、36-41和1.7-2.2,分类网络对真实组生成的图像进行了较高的分类准确率。幻影研究结果表明,由于理想的图像质量条件,评估指标具有很高的价值。然而,在患者研究中,取得了令人鼓舞的结果,表明图像质量和训练数据数量会影响网络性能。本研究旨在评估p2 p GAN网络应用于不同时序图像生成的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
13.30%
发文量
267
审稿时长
>12 weeks
期刊介绍: Als Standes- und Fachorgan (Organ von Deutscher Gesellschaft für Nuklearmedizin (DGN), Österreichischer Gesellschaft für Nuklearmedizin und Molekulare Bildgebung (ÖGN), Schweizerischer Gesellschaft für Nuklearmedizin (SGNM, SSNM)) von hohem wissenschaftlichen Anspruch befasst sich die CME-zertifizierte Nuklearmedizin/ NuclearMedicine mit Diagnostik und Therapie in der Nuklearmedizin und dem Strahlenschutz: Originalien, Übersichtsarbeiten, Referate und Kongressberichte stellen aktuelle Themen der Diagnose und Therapie dar. Ausführliche Berichte aus den DGN-Arbeitskreisen, Nachrichten aus Forschung und Industrie sowie Beschreibungen innovativer technischer Geräte, Einrichtungen und Systeme runden das Konzept ab. Die Abstracts der Jahrestagungen dreier europäischer Fachgesellschaften sind Bestandteil der Kongressausgaben. Nuklearmedizin erscheint regelmäßig mit sechs Ausgaben pro Jahr und richtet sich vor allem an Nuklearmediziner, Radiologen, Strahlentherapeuten, Medizinphysiker und Radiopharmazeuten.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信