Bart van Oirschot, Jeroen J J P van den Beucken, Antonios G Mikos, John A Jansen
{"title":"Lateral Bone Augmentation Using a Three-Dimensional-Printed Polymeric Chamber to Compare Biomaterials.","authors":"Bart van Oirschot, Jeroen J J P van den Beucken, Antonios G Mikos, John A Jansen","doi":"10.1089/ten.TEC.2023.0025","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to test the suitability of calcium phosphate cement mixed with poly(lactic-<i>co</i>-glycolic acid) (CPC-PLGA) microparticles into a ring-shaped polymeric space-maintaining device as bone graft material for lateral bone augmentation. Therefore, the bone chambers were installed on the lateral portion of the anterior region of the mandibular body of mini-pigs. Chambers were filled with either CPC-PLGA or BioOss<sup>®</sup> particles for comparison and left for 4 and 12 weeks. Histology and histomorphometry were used to obtain temporal insight in material degradation and bone formation. Results indicated that between 4 and 12 weeks of implantation, a significant degradation of the CPC-PLGA (from 75.1% to 23.1%), as well as BioOss material, occurred (from 40.6% to 14.4%). Degradation of both materials was associated with the presence of macrophage-like and osteoclast-like cells. Furthermore, a significant increase in bone formation occurred between 4 and 12 weeks for the CPC-PLGA (from 0.1% to 7.2%), as well as BioOss material (from 8.3% to 23.3%). Statistical analysis showed that bone formation had progressed significantly better using BioOss compared to CPC-PLGA (<i>p</i> < 0.05). In conclusion, this mini-pig study showed that CPC-PLGA does not stimulate lateral bone augmentation using a bone chamber device. Both treatments failed to achieve \"clinically\" meaningful alveolar ridge augmentation.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 7","pages":"287-297"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2023.0025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to test the suitability of calcium phosphate cement mixed with poly(lactic-co-glycolic acid) (CPC-PLGA) microparticles into a ring-shaped polymeric space-maintaining device as bone graft material for lateral bone augmentation. Therefore, the bone chambers were installed on the lateral portion of the anterior region of the mandibular body of mini-pigs. Chambers were filled with either CPC-PLGA or BioOss® particles for comparison and left for 4 and 12 weeks. Histology and histomorphometry were used to obtain temporal insight in material degradation and bone formation. Results indicated that between 4 and 12 weeks of implantation, a significant degradation of the CPC-PLGA (from 75.1% to 23.1%), as well as BioOss material, occurred (from 40.6% to 14.4%). Degradation of both materials was associated with the presence of macrophage-like and osteoclast-like cells. Furthermore, a significant increase in bone formation occurred between 4 and 12 weeks for the CPC-PLGA (from 0.1% to 7.2%), as well as BioOss material (from 8.3% to 23.3%). Statistical analysis showed that bone formation had progressed significantly better using BioOss compared to CPC-PLGA (p < 0.05). In conclusion, this mini-pig study showed that CPC-PLGA does not stimulate lateral bone augmentation using a bone chamber device. Both treatments failed to achieve "clinically" meaningful alveolar ridge augmentation.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.