Development of lung segmentation method in x-ray images of children based on TransResUNet.

Lingdong Chen, Zhuo Yu, Jian Huang, Liqi Shu, Pekka Kuosmanen, Chen Shen, Xiaohui Ma, Jing Li, Chensheng Sun, Zheming Li, Ting Shu, Gang Yu
{"title":"Development of lung segmentation method in x-ray images of children based on TransResUNet.","authors":"Lingdong Chen,&nbsp;Zhuo Yu,&nbsp;Jian Huang,&nbsp;Liqi Shu,&nbsp;Pekka Kuosmanen,&nbsp;Chen Shen,&nbsp;Xiaohui Ma,&nbsp;Jing Li,&nbsp;Chensheng Sun,&nbsp;Zheming Li,&nbsp;Ting Shu,&nbsp;Gang Yu","doi":"10.3389/fradi.2023.1190745","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chest x-ray (CXR) is widely applied for the detection and diagnosis of children's lung diseases. Lung field segmentation in digital CXR images is a key section of many computer-aided diagnosis systems.</p><p><strong>Objective: </strong>In this study, we propose a method based on deep learning to improve the lung segmentation quality and accuracy of children's multi-center CXR images.</p><p><strong>Methods: </strong>The novelty of the proposed method is the combination of merits of TransUNet and ResUNet. The former can provide a self-attention module improving the feature learning ability of the model, while the latter can avoid the problem of network degradation.</p><p><strong>Results: </strong>Applied on the test set containing multi-center data, our model achieved a Dice score of 0.9822.</p><p><strong>Conclusions: </strong>This novel lung segmentation method proposed in this work based on TransResUNet is better than other existing medical image segmentation networks.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"3 ","pages":"1190745"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365102/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2023.1190745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Chest x-ray (CXR) is widely applied for the detection and diagnosis of children's lung diseases. Lung field segmentation in digital CXR images is a key section of many computer-aided diagnosis systems.

Objective: In this study, we propose a method based on deep learning to improve the lung segmentation quality and accuracy of children's multi-center CXR images.

Methods: The novelty of the proposed method is the combination of merits of TransUNet and ResUNet. The former can provide a self-attention module improving the feature learning ability of the model, while the latter can avoid the problem of network degradation.

Results: Applied on the test set containing multi-center data, our model achieved a Dice score of 0.9822.

Conclusions: This novel lung segmentation method proposed in this work based on TransResUNet is better than other existing medical image segmentation networks.

Abstract Image

Abstract Image

Abstract Image

基于TransResUNet的儿童x射线图像肺部分割方法的研究。
背景:胸部x线(CXR)被广泛应用于儿童肺部疾病的检测和诊断。数字CXR图像的肺野分割是许多计算机辅助诊断系统的关键部分。目的:在本研究中,我们提出了一种基于深度学习的方法来提高儿童多中心CXR图像的肺分割质量和准确性。方法:该方法的新颖之处在于结合了TransUNet和ResUNet的优点。前者可以提供自关注模块,提高模型的特征学习能力,后者可以避免网络退化问题。结果:应用于包含多中心数据的测试集,我们的模型获得了0.9822的Dice得分。结论:本文提出的基于TransResUNet的肺图像分割方法优于现有的其他医学图像分割网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信