Localization supervision of chest x-ray classifiers using label-specific eye-tracking annotation.

Frontiers in radiology Pub Date : 2023-06-22 eCollection Date: 2023-01-01 DOI:10.3389/fradi.2023.1088068
Ricardo Bigolin Lanfredi, Joyce D Schroeder, Tolga Tasdizen
{"title":"Localization supervision of chest x-ray classifiers using label-specific eye-tracking annotation.","authors":"Ricardo Bigolin Lanfredi, Joyce D Schroeder, Tolga Tasdizen","doi":"10.3389/fradi.2023.1088068","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) have been successfully applied to chest x-ray (CXR) images. Moreover, annotated bounding boxes have been shown to improve the interpretability of a CNN in terms of localizing abnormalities. However, only a few relatively small CXR datasets containing bounding boxes are available, and collecting them is very costly. Opportunely, eye-tracking (ET) data can be collected during the clinical workflow of a radiologist. We use ET data recorded from radiologists while dictating CXR reports to train CNNs. We extract snippets from the ET data by associating them with the dictation of keywords and use them to supervise the localization of specific abnormalities. We show that this method can improve a model's interpretability without impacting its image-level classification.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2023.1088068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) have been successfully applied to chest x-ray (CXR) images. Moreover, annotated bounding boxes have been shown to improve the interpretability of a CNN in terms of localizing abnormalities. However, only a few relatively small CXR datasets containing bounding boxes are available, and collecting them is very costly. Opportunely, eye-tracking (ET) data can be collected during the clinical workflow of a radiologist. We use ET data recorded from radiologists while dictating CXR reports to train CNNs. We extract snippets from the ET data by associating them with the dictation of keywords and use them to supervise the localization of specific abnormalities. We show that this method can improve a model's interpretability without impacting its image-level classification.

Abstract Image

Abstract Image

Abstract Image

利用特定标签眼动跟踪注释对胸部 X 光分类器进行定位监督。
卷积神经网络(CNN)已成功应用于胸部 X 光(CXR)图像。此外,注释边界框已被证明可提高 CNN 在定位异常方面的可解释性。然而,目前只有少数包含边界框的相对较小的 CXR 数据集,而且收集这些数据集的成本非常高。眼动跟踪(ET)数据可以在放射科医生的临床工作流程中收集。我们使用放射科医生在口述 CXR 报告时记录的 ET 数据来训练 CNN。我们从 ET 数据中提取片段,将它们与关键字的口述关联起来,并用它们来监督特定异常的定位。我们的研究表明,这种方法可以提高模型的可解释性,而不会影响其图像级分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信