KPCA-WRF-prediction of heart rate using deep feature fusion and machine learning classification with tuned weighted hyper-parameter.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Network-Computation in Neural Systems Pub Date : 2023-02-01 Epub Date: 2023-08-03 DOI:10.1080/0954898X.2023.2238070
G Jasmine Christabel, A C Subhajini
{"title":"KPCA-WRF-prediction of heart rate using deep feature fusion and machine learning classification with tuned weighted hyper-parameter.","authors":"G Jasmine Christabel, A C Subhajini","doi":"10.1080/0954898X.2023.2238070","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of technology such as stream processing technologies, deep-learning approaches, and artificial intelligence plays a prominent and vital role, to detect heart rate using a prediction model. However, the existing methods could not handle high -dimensional datasets, and deep feature learning to improvise the performance. Therefore, this work proposed a real-time heart rate prediction model, using K-nearest neighbour (KNN) adhered to the principle component analysis algorithm (PCA) and weighted random forest algorithm for feature fusion (KPCA-WRF) approach and deep CNN feature learning framework. The feature selection, from the fused features, was optimized by ant colony optimization (ACO) and particle swarm optimization (PSO) algorithm to enhance the selected fused features from deep CNN. The optimized features were reduced to low dimensions using the PCA algorithm. The significant straight heart rate features are plotted by capturing out nearest similar data point values using the algorithm. The fused features were then classified for aiding the training process. The weighted values are assigned to those tuned hyper parameters (feature matrix forms). The optimal path and continuity of the weighted feature representations are moved using the random forest algorithm, in K-fold validation iterations.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2238070","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid advancement of technology such as stream processing technologies, deep-learning approaches, and artificial intelligence plays a prominent and vital role, to detect heart rate using a prediction model. However, the existing methods could not handle high -dimensional datasets, and deep feature learning to improvise the performance. Therefore, this work proposed a real-time heart rate prediction model, using K-nearest neighbour (KNN) adhered to the principle component analysis algorithm (PCA) and weighted random forest algorithm for feature fusion (KPCA-WRF) approach and deep CNN feature learning framework. The feature selection, from the fused features, was optimized by ant colony optimization (ACO) and particle swarm optimization (PSO) algorithm to enhance the selected fused features from deep CNN. The optimized features were reduced to low dimensions using the PCA algorithm. The significant straight heart rate features are plotted by capturing out nearest similar data point values using the algorithm. The fused features were then classified for aiding the training process. The weighted values are assigned to those tuned hyper parameters (feature matrix forms). The optimal path and continuity of the weighted feature representations are moved using the random forest algorithm, in K-fold validation iterations.

基于深度特征融合和加权超参数机器学习分类的kpca - wrf心率预测。
流处理技术、深度学习方法和人工智能等技术的快速发展在使用预测模型检测心率方面发挥着突出而重要的作用。然而,现有的方法无法处理高维数据集,并且无法通过深度特征学习来即兴发挥性能。因此,本工作提出了一种实时心率预测模型,使用K近邻(KNN)坚持主成分分析算法(PCA)和加权随机森林算法进行特征融合(KPCA-WRF)方法和深度CNN特征学习框架。通过蚁群优化(ACO)和粒子群优化(PSO)算法对融合特征中的特征选择进行优化,以增强深度CNN中选择的融合特征。使用PCA算法将优化后的特征降到低维。通过使用该算法捕获最近的相似数据点值来绘制显著的直线心率特征。然后对融合的特征进行分类,以帮助训练过程。加权值被分配给那些调谐的超参数(特征矩阵形式)。在K-fold验证迭代中,使用随机森林算法移动加权特征表示的最优路径和连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信