{"title":"Non-invasive ventilation treatment for patients with chronic obstructive pulmonary disease","authors":"Fleur T. Tehrani, James H. Roum","doi":"10.1049/htl2.12048","DOIUrl":null,"url":null,"abstract":"<p>Chronic obstructive pulmonary disease (COPD) affects the lives of millions of patients worldwide. Patients with advanced COPD may require non-invasive ventilation (NIV) to support the resultant deficiencies of the respiratory system. The purpose of this study was to evaluate the effects of varying the continuous positive airway pressure (CPAP) and oxygen supplementation components of NIV on simulated COPD patients by using an established and detailed model of the human respiratory system. The model used in the study simulates features of advanced COPD including the effects on the changes in ventilation control, increases in respiratory dead space and airway resistance, and the acid–base shifts in the blood seen in these patients over time. The results of the study have been compared with and found to be in general agreement with available clinical data. Our results demonstrate that under non-emergency conditions, low levels of oxygen supplementation combined with low levels of CPAP therapy seem to improve hypoxemia and hypercapnia in the model, whereas prolonged high-level CPAP and moderate-to-high levels of oxygen supplementation do not. The authors conclude that such modelling may be useful to help guide beneficial interventions for COPD patients using NIV.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"10 4","pages":"80-86"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12048","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic obstructive pulmonary disease (COPD) affects the lives of millions of patients worldwide. Patients with advanced COPD may require non-invasive ventilation (NIV) to support the resultant deficiencies of the respiratory system. The purpose of this study was to evaluate the effects of varying the continuous positive airway pressure (CPAP) and oxygen supplementation components of NIV on simulated COPD patients by using an established and detailed model of the human respiratory system. The model used in the study simulates features of advanced COPD including the effects on the changes in ventilation control, increases in respiratory dead space and airway resistance, and the acid–base shifts in the blood seen in these patients over time. The results of the study have been compared with and found to be in general agreement with available clinical data. Our results demonstrate that under non-emergency conditions, low levels of oxygen supplementation combined with low levels of CPAP therapy seem to improve hypoxemia and hypercapnia in the model, whereas prolonged high-level CPAP and moderate-to-high levels of oxygen supplementation do not. The authors conclude that such modelling may be useful to help guide beneficial interventions for COPD patients using NIV.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.