Assessment of human gait after total knee arthroplasty by dynamic time warping algorithm

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Reza Abbasi-Kesbi, Mohammad Fathi, Mohammad Najafi, Alireza Nikfarjam
{"title":"Assessment of human gait after total knee arthroplasty by dynamic time warping algorithm","authors":"Reza Abbasi-Kesbi,&nbsp;Mohammad Fathi,&nbsp;Mohammad Najafi,&nbsp;Alireza Nikfarjam","doi":"10.1049/htl2.12047","DOIUrl":null,"url":null,"abstract":"<p>Today, the elderly population is increasing, and there are many drawbacks for them, especially defects in their knee joints which lead to improper gait. To solve this problem, their knee joint can be replaced with knee arthroplasty. In this letter, level of improvement in the human gait before and after total knee arthroplasty (TKA) surgery is investigated using the dynamic time warping (DTW) algorithm. For this purpose, several volunteers who have problems with their knees are incorporated in a test before and after TKA surgery. Then, the data of gait analysis is collected and the data is compared with a reference using the DTW algorithm. The outcome results illustrate an improvement of 89%–97% by the proposed algorithm after TKA surgery. Therefore, patients can see improvement with high accuracy and very fast that result in more use this technique in TKR surgery.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"10 4","pages":"73-79"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12047","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Today, the elderly population is increasing, and there are many drawbacks for them, especially defects in their knee joints which lead to improper gait. To solve this problem, their knee joint can be replaced with knee arthroplasty. In this letter, level of improvement in the human gait before and after total knee arthroplasty (TKA) surgery is investigated using the dynamic time warping (DTW) algorithm. For this purpose, several volunteers who have problems with their knees are incorporated in a test before and after TKA surgery. Then, the data of gait analysis is collected and the data is compared with a reference using the DTW algorithm. The outcome results illustrate an improvement of 89%–97% by the proposed algorithm after TKA surgery. Therefore, patients can see improvement with high accuracy and very fast that result in more use this technique in TKR surgery.

Abstract Image

基于动态时间翘曲算法的全膝关节置换术后人体步态评估
在老年人口不断增加的今天,老年人存在着许多弊端,尤其是膝关节的缺陷导致了他们的步态不正确。为了解决这个问题,他们可以用膝关节置换术代替膝关节。在这封信中,使用动态时间翘曲(DTW)算法研究了全膝关节置换术(TKA)手术前后人类步态的改善水平。为此,几名膝盖有问题的志愿者在TKA手术前后接受了测试。然后,采集步态分析数据,并使用DTW算法与参考数据进行比较。结果表明,该算法在TKA手术后改善了89%-97%。因此,患者可以看到高准确性和非常快的改善,从而在TKR手术中更多地使用该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信