Antlion larvae localize long distant preys by a mechanism based on time difference.

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Vanessa Martinez, David Sillam-Dussès, Dušan Devetak, Vincent Lorent, Jan Podlesnik
{"title":"Antlion larvae localize long distant preys by a mechanism based on time difference.","authors":"Vanessa Martinez, David Sillam-Dussès, Dušan Devetak, Vincent Lorent, Jan Podlesnik","doi":"10.1007/s00359-023-01641-x","DOIUrl":null,"url":null,"abstract":"<p><p>Pit building antlions Euroleon nostras have been submitted to artificial cues in order to delineate their faculty to localize a prey. Series of propagating pulses in sand have been created from an extended source made of 10 piezoelectric transducers equally spaced on a line and located at a large distance from the pit. The envelope of each pulse encompasses six oscillations at a carrier frequency of 1250 Hz and up to eight oscillations at 1666 Hz. In one set of experiments, the first wave front is followed by similar wave fronts and the antlions respond to the cue by throwing sand in the opposite direction of the wave front propagation direction. In another set of experiments, the first wave front is randomly spatially structured while the propagation of the wave fronts inside the envelope of the pulse are not. In that case, the antlions respond less to the cue by throwing sand, and when they do, their sand throwing is more randomly distributed in direction. The finding shows that the localization of vibration signal by antlions are based on the equivalent for hearing animals of interaural time difference in which the onset has more significance than the interaural phase difference.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01641-x","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pit building antlions Euroleon nostras have been submitted to artificial cues in order to delineate their faculty to localize a prey. Series of propagating pulses in sand have been created from an extended source made of 10 piezoelectric transducers equally spaced on a line and located at a large distance from the pit. The envelope of each pulse encompasses six oscillations at a carrier frequency of 1250 Hz and up to eight oscillations at 1666 Hz. In one set of experiments, the first wave front is followed by similar wave fronts and the antlions respond to the cue by throwing sand in the opposite direction of the wave front propagation direction. In another set of experiments, the first wave front is randomly spatially structured while the propagation of the wave fronts inside the envelope of the pulse are not. In that case, the antlions respond less to the cue by throwing sand, and when they do, their sand throwing is more randomly distributed in direction. The finding shows that the localization of vibration signal by antlions are based on the equivalent for hearing animals of interaural time difference in which the onset has more significance than the interaural phase difference.

Abstract Image

蚁狮幼虫通过一种基于时间差的机制来确定远距离猎物的位置。
为了确定筑巢蚁定位猎物的能力,我们对筑巢蚁进行了人工提示。由 10 个压电换能器组成的扩展信号源在沙中产生了一系列传播脉冲,这些换能器的间距相等,并与蚁穴保持较大距离。每个脉冲的包络线包括载波频率为 1250 Hz 的六次振荡和高达 1666 Hz 的八次振荡。在一组实验中,第一个波阵面之后是类似的波阵面,蚁狮对提示做出反应,向波阵面传播方向的反方向扔沙子。在另一组实验中,第一个波阵面是随机的空间结构,而脉冲包络线内的波阵面传播则不是随机的空间结构。在这种情况下,蚁狮对抛沙提示的反应较小,而且当它们抛沙时,其抛沙方向的分布更加随机。这一发现表明,蚁狮对振动信号的定位是基于等效于听觉动物的耳间时差,其中起始时间比耳间相位差更重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信