Can Shoulder Impairments Be Classified From 3-Dimensional Kinematics Using Inertial Sensors?

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Bruno Mazuquin, Karl Peter Gill, Puneet Monga, James Selfe, Jim Richards
{"title":"Can Shoulder Impairments Be Classified From 3-Dimensional Kinematics Using Inertial Sensors?","authors":"Bruno Mazuquin,&nbsp;Karl Peter Gill,&nbsp;Puneet Monga,&nbsp;James Selfe,&nbsp;Jim Richards","doi":"10.1123/jab.2022-0173","DOIUrl":null,"url":null,"abstract":"<p><p>Inertial sensors may help clinicians to assess patients' movement and potentially support clinical decision making. Our aim was to determine whether shoulder range of motion during movement tasks measured using inertial sensors is capable of accurately discriminating between patients with different shoulder problems. Inertial sensors were used to measure 3-dimensional shoulder motion during 6 tasks of 37 patients on the waiting list for shoulder surgery. Discriminant function analysis was used to identify whether the range of motion of different tasks could classify patients with different shoulder problems. The discriminant function analysis could correctly classify 91.9% of patients into one of the 3 diagnostic groups based. The tasks that associated a patient with a particular diagnostic group were the following: subacromial decompression: abduction, rotator cuff repair of tears ≤5 cm: flexion and rotator cuff repair of tears >5 cm: combing hair, abduction, and horizontal abduction-adduction. The discriminant function analysis showed that range of motion measured by inertial sensors can correctly classify patients and could be used as a screening tool to support surgery planning.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"264-267"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inertial sensors may help clinicians to assess patients' movement and potentially support clinical decision making. Our aim was to determine whether shoulder range of motion during movement tasks measured using inertial sensors is capable of accurately discriminating between patients with different shoulder problems. Inertial sensors were used to measure 3-dimensional shoulder motion during 6 tasks of 37 patients on the waiting list for shoulder surgery. Discriminant function analysis was used to identify whether the range of motion of different tasks could classify patients with different shoulder problems. The discriminant function analysis could correctly classify 91.9% of patients into one of the 3 diagnostic groups based. The tasks that associated a patient with a particular diagnostic group were the following: subacromial decompression: abduction, rotator cuff repair of tears ≤5 cm: flexion and rotator cuff repair of tears >5 cm: combing hair, abduction, and horizontal abduction-adduction. The discriminant function analysis showed that range of motion measured by inertial sensors can correctly classify patients and could be used as a screening tool to support surgery planning.

利用惯性传感器可以从三维运动学中对肩部损伤进行分类吗?
惯性传感器可以帮助临床医生评估患者的运动,并可能支持临床决策。我们的目的是确定在运动任务中使用惯性传感器测量的肩部运动范围是否能够准确区分患有不同肩部问题的患者。使用惯性传感器测量37例肩部手术候诊患者在6个任务中的三维肩部运动。采用判别函数分析来确定不同任务的运动范围是否可以对不同肩部问题的患者进行分类。判别函数分析可以正确地将91.9%的患者划分为3个诊断组之一。与特定诊断组相关的患者任务如下:肩峰下减压:外展,肩袖修复撕裂≤5cm;屈曲和肩袖修复撕裂> 5cm;梳头,外展,水平外展-内收。判别函数分析表明,惯性传感器测量的运动范围能正确分类患者,可作为支持手术计划的筛选工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信