AI models for protein design are driving antibody engineering

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL
Michael F. Chungyoun , Jeffrey J. Gray
{"title":"AI models for protein design are driving antibody engineering","authors":"Michael F. Chungyoun ,&nbsp;Jeffrey J. Gray","doi":"10.1016/j.cobme.2023.100473","DOIUrl":null,"url":null,"abstract":"<div><p>Therapeutic antibody engineering seeks to identify antibody sequences with specific binding to a target and optimized drug-like properties. When guided by deep learning, antibody generation methods can draw on prior knowledge and experimental efforts to improve this process. By leveraging the increasing quantity and quality of predicted structures of antibodies and target antigens, powerful structure-based generative models are emerging. In this review, we tie the advancements in deep learning-based protein structure prediction and design to the study of antibody therapeutics.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361400/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000296","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Therapeutic antibody engineering seeks to identify antibody sequences with specific binding to a target and optimized drug-like properties. When guided by deep learning, antibody generation methods can draw on prior knowledge and experimental efforts to improve this process. By leveraging the increasing quantity and quality of predicted structures of antibodies and target antigens, powerful structure-based generative models are emerging. In this review, we tie the advancements in deep learning-based protein structure prediction and design to the study of antibody therapeutics.

用于蛋白质设计的人工智能模型正在推动抗体工程
治疗性抗体工程旨在鉴定具有特异性结合靶标和优化药物样特性的抗体序列。在深度学习的指导下,抗体生成方法可以利用先验知识和实验成果来改进这一过程。随着抗体和靶抗原预测结构的数量和质量的不断提高,基于结构的强大生成模型正在出现。在这篇综述中,我们将基于深度学习的蛋白质结构预测和设计的进展与抗体治疗的研究联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信