Clemens Wittwehr, Laure-Alix Clerbaux, Stephen Edwards, Michelle Angrish, Holly Mortensen, Annamaria Carusi, Maciej Gromelski, Eftychia Lekka, Vassilis Virvilis, Marvin Martens, Luiz Olavo Bonino da Silva Santos, Penny Nymark
{"title":"Why adverse outcome pathways need to be FAIR.","authors":"Clemens Wittwehr, Laure-Alix Clerbaux, Stephen Edwards, Michelle Angrish, Holly Mortensen, Annamaria Carusi, Maciej Gromelski, Eftychia Lekka, Vassilis Virvilis, Marvin Martens, Luiz Olavo Bonino da Silva Santos, Penny Nymark","doi":"10.14573/altex.2307131","DOIUrl":null,"url":null,"abstract":"<p><p>Adverse outcome pathways (AOPs) provide evidence for demonstrating and assessing causality between measurable toxicological mechanisms and human or environmental adverse effects. AOPs have gained increasing attention over the past decade and are believed to provide the necessary steppingstone for more effective risk assessment of chemicals and materials and moving beyond the need for animal testing. However, as with all types of data and knowledge today, AOPs need to be reusable by machines, i.e., machine-actionable, in order to reach their full impact potential. Machine-actionability is supported by the FAIR principles, which guide findability, accessibility, interoperability, and reusability of data and knowledge. Here, we describe why AOPs need to be FAIR and touch on aspects such as the improved visibility and the increased trust that FAIRification of AOPs provides.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"50-56"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altex-Alternatives To Animal Experimentation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.2307131","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adverse outcome pathways (AOPs) provide evidence for demonstrating and assessing causality between measurable toxicological mechanisms and human or environmental adverse effects. AOPs have gained increasing attention over the past decade and are believed to provide the necessary steppingstone for more effective risk assessment of chemicals and materials and moving beyond the need for animal testing. However, as with all types of data and knowledge today, AOPs need to be reusable by machines, i.e., machine-actionable, in order to reach their full impact potential. Machine-actionability is supported by the FAIR principles, which guide findability, accessibility, interoperability, and reusability of data and knowledge. Here, we describe why AOPs need to be FAIR and touch on aspects such as the improved visibility and the increased trust that FAIRification of AOPs provides.
期刊介绍:
ALTEX publishes original articles, short communications, reviews, as well as news and comments and meeting reports. Manuscripts submitted to ALTEX are evaluated by two expert reviewers. The evaluation takes into account the scientific merit of a manuscript and its contribution to animal welfare and the 3R principle.