Hussain Ahmad Madni, Rao Muhammad Umer, Gian Luca Foresti
{"title":"Swarm-FHE: Fully Homomorphic Encryption-based Swarm Learning for Malicious Clients.","authors":"Hussain Ahmad Madni, Rao Muhammad Umer, Gian Luca Foresti","doi":"10.1142/S0129065723500338","DOIUrl":null,"url":null,"abstract":"<p><p>Swarm Learning (SL) is a promising approach to perform the distributed and collaborative model training without any central server. However, data sensitivity is the main concern for privacy when collaborative training requires data sharing. A neural network, especially Generative Adversarial Network (GAN), is able to reproduce the original data from model parameters, i.e. gradient leakage problem. To solve this problem, SL provides a framework for secure aggregation using blockchain methods. In this paper, we consider the scenario of compromised and malicious participants in the SL environment, where a participant can manipulate the privacy of other participant in collaborative training. We propose a method, Swarm-FHE, Swarm Learning with Fully Homomorphic Encryption (FHE), to encrypt the model parameters before sharing with the participants which are registered and authenticated by blockchain technology. Each participant shares the encrypted parameters (i.e. ciphertexts) with other participants in SL training. We evaluate our method with training of the convolutional neural networks on the CIFAR-10 and MNIST datasets. On the basis of a considerable number of experiments and results with different hyperparameter settings, our method performs better as compared to other existing methods.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 8","pages":"2350033"},"PeriodicalIF":6.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500338","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Swarm Learning (SL) is a promising approach to perform the distributed and collaborative model training without any central server. However, data sensitivity is the main concern for privacy when collaborative training requires data sharing. A neural network, especially Generative Adversarial Network (GAN), is able to reproduce the original data from model parameters, i.e. gradient leakage problem. To solve this problem, SL provides a framework for secure aggregation using blockchain methods. In this paper, we consider the scenario of compromised and malicious participants in the SL environment, where a participant can manipulate the privacy of other participant in collaborative training. We propose a method, Swarm-FHE, Swarm Learning with Fully Homomorphic Encryption (FHE), to encrypt the model parameters before sharing with the participants which are registered and authenticated by blockchain technology. Each participant shares the encrypted parameters (i.e. ciphertexts) with other participants in SL training. We evaluate our method with training of the convolutional neural networks on the CIFAR-10 and MNIST datasets. On the basis of a considerable number of experiments and results with different hyperparameter settings, our method performs better as compared to other existing methods.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.