Stacey S. Cherny, Frances M. K. Williams, Gregory Livshits
{"title":"Genetic and environmental correlational structure among metabolic syndrome endophenotypes","authors":"Stacey S. Cherny, Frances M. K. Williams, Gregory Livshits","doi":"10.1111/ahg.12465","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Metabolic syndrome (MetS) is diagnosed by the presence of high scores on three or more metabolic traits, including systolic and diastolic blood pressure (SBP, DBP), glucose and insulin levels, cholesterol and triglyceride (TG) levels, and central obesity. A diagnosis of MetS is associated with increased risk of cardiovascular disease and type 2 diabetes. The components of MetS have long been demonstrated to have substantial genetic components, but their genetic overlap is less well understood. The present paper takes a multi-prong approach to examining the extent of this genetic overlap. This includes the quantitative genetic and additive Bayesian network modeling of the large TwinsUK project and examination of the results of genome-wide association study (GWAS) of UK Biobank data through use of LD score regression and examination of the number of genes and pathways identified in the GWASes which overlap across MetS traits. Results demonstrate a modest genetic overlap, and the genetic correlations obtained from TwinsUK and UK Biobank are nearly identical. However, these correlations imply more genetic dissimilarity than similarity. Furthermore, examination of the extent of overlap in significant GWAS hits, both at the gene and pathway level, again demonstrates only modest but significant genetic overlap. This lends support to the idea that in clinical treatment of MetS, treating each of the components individually may be an important way to address MetS.</p>\n </section>\n </div>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"86 5","pages":"225-236"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12465","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic syndrome (MetS) is diagnosed by the presence of high scores on three or more metabolic traits, including systolic and diastolic blood pressure (SBP, DBP), glucose and insulin levels, cholesterol and triglyceride (TG) levels, and central obesity. A diagnosis of MetS is associated with increased risk of cardiovascular disease and type 2 diabetes. The components of MetS have long been demonstrated to have substantial genetic components, but their genetic overlap is less well understood. The present paper takes a multi-prong approach to examining the extent of this genetic overlap. This includes the quantitative genetic and additive Bayesian network modeling of the large TwinsUK project and examination of the results of genome-wide association study (GWAS) of UK Biobank data through use of LD score regression and examination of the number of genes and pathways identified in the GWASes which overlap across MetS traits. Results demonstrate a modest genetic overlap, and the genetic correlations obtained from TwinsUK and UK Biobank are nearly identical. However, these correlations imply more genetic dissimilarity than similarity. Furthermore, examination of the extent of overlap in significant GWAS hits, both at the gene and pathway level, again demonstrates only modest but significant genetic overlap. This lends support to the idea that in clinical treatment of MetS, treating each of the components individually may be an important way to address MetS.
期刊介绍:
Annals of Human Genetics publishes material directly concerned with human genetics or the application of scientific principles and techniques to any aspect of human inheritance. Papers that describe work on other species that may be relevant to human genetics will also be considered. Mathematical models should include examples of application to data where possible.
Authors are welcome to submit Supporting Information, such as data sets or additional figures or tables, that will not be published in the print edition of the journal, but which will be viewable via the online edition and stored on the website.