{"title":"Social-Economic Backgrounds to US County-Based COVID-19 Deaths: PLS-SEM Analysis.","authors":"Benjamin P Bowser","doi":"10.1007/s40615-023-01698-z","DOIUrl":null,"url":null,"abstract":"<p><p>A complex interplay of social, economic, and environmental factors drove the COVID-19 epidemic. Understanding these factors is crucial in explaining the racial disparities observed in COVID-19 deaths. This research investigated various hypotheses, including ecological, racial, demographic, economic, and political party factors, to determine their impact on COVID-19 deaths. The study utilized data from the National Center for Health Statistics (NCHS), specifically focusing on COVID-19 deaths categorized by race and Hispanic origin in US counties, with over 100 recorded deaths as of July 11, 2022.</p><p><strong>Method: </strong>To analyze the data, the study employed partial least squares (PLS) as the statistical approach, considering the presence of multicollinearity in the county-level socioeconomic data. SmartPLS4 software was utilized to illustrate paths depicting variance and covariance and to conduct significance tests. The analysis encompassed overall COVID-19 deaths and deaths among White, Black, and Hispanic Americans, utilizing the same latent variables and paths.</p><p><strong>Results: </strong>The results revealed that the number of residents aged 65 years or older in a county was the most influential predictor of COVID-19 deaths, irrespective of race. Economic factors emerged as the second strongest predictors. However, when considering each racial group separately, distinct factors aligned with the five hypotheses emerged as significant contributors to COVID-19 deaths. Furthermore, the diagrams illustrating the relationships between these factors (covariates) varied among racial groups, indicating that the underlying social influences differed across races.</p><p><strong>Discussion: </strong>In light of these findings, it becomes evident that a \"one-size-fits-all\" approach to prevention strategies is suboptimal. Instead, targeted prevention efforts tailored to specific racial and social classes at high risk of COVID-19 death could have provided more precise messaging and necessitate direct engagement.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40615-023-01698-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A complex interplay of social, economic, and environmental factors drove the COVID-19 epidemic. Understanding these factors is crucial in explaining the racial disparities observed in COVID-19 deaths. This research investigated various hypotheses, including ecological, racial, demographic, economic, and political party factors, to determine their impact on COVID-19 deaths. The study utilized data from the National Center for Health Statistics (NCHS), specifically focusing on COVID-19 deaths categorized by race and Hispanic origin in US counties, with over 100 recorded deaths as of July 11, 2022.
Method: To analyze the data, the study employed partial least squares (PLS) as the statistical approach, considering the presence of multicollinearity in the county-level socioeconomic data. SmartPLS4 software was utilized to illustrate paths depicting variance and covariance and to conduct significance tests. The analysis encompassed overall COVID-19 deaths and deaths among White, Black, and Hispanic Americans, utilizing the same latent variables and paths.
Results: The results revealed that the number of residents aged 65 years or older in a county was the most influential predictor of COVID-19 deaths, irrespective of race. Economic factors emerged as the second strongest predictors. However, when considering each racial group separately, distinct factors aligned with the five hypotheses emerged as significant contributors to COVID-19 deaths. Furthermore, the diagrams illustrating the relationships between these factors (covariates) varied among racial groups, indicating that the underlying social influences differed across races.
Discussion: In light of these findings, it becomes evident that a "one-size-fits-all" approach to prevention strategies is suboptimal. Instead, targeted prevention efforts tailored to specific racial and social classes at high risk of COVID-19 death could have provided more precise messaging and necessitate direct engagement.