{"title":"New Method for Rapid 3D Reconstruction of Semi-Transparent Underwater Animals and Structures.","authors":"Joost Daniels, Giovanna Sainz, Kakani Katija","doi":"10.1093/iob/obad023","DOIUrl":null,"url":null,"abstract":"<p><p>Morphological features are the primary identifying properties of most animals and key to many comparative physiological studies, yet current techniques for preservation and documentation of soft-bodied marine animals are limited in terms of quality and accessibility. Digital records can complement physical specimens, with a wide array of applications ranging from species description to kinematics modeling, but options are lacking for creating models of soft-bodied semi-transparent underwater animals. We developed a lab-based technique that can live-scan semi-transparent, submerged animals, and objects within seconds. To demonstrate the method, we generated full three-dimensional reconstructions (3DRs) of an object of known dimensions for verification, as well as two live marine animals-a siphonophore and an amphipod-allowing detailed measurements on each. Techniques like these pave the way for faster data capture, integrative and comparative quantitative approaches, and more accessible collections of fragile and rare biological samples.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obad023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Morphological features are the primary identifying properties of most animals and key to many comparative physiological studies, yet current techniques for preservation and documentation of soft-bodied marine animals are limited in terms of quality and accessibility. Digital records can complement physical specimens, with a wide array of applications ranging from species description to kinematics modeling, but options are lacking for creating models of soft-bodied semi-transparent underwater animals. We developed a lab-based technique that can live-scan semi-transparent, submerged animals, and objects within seconds. To demonstrate the method, we generated full three-dimensional reconstructions (3DRs) of an object of known dimensions for verification, as well as two live marine animals-a siphonophore and an amphipod-allowing detailed measurements on each. Techniques like these pave the way for faster data capture, integrative and comparative quantitative approaches, and more accessible collections of fragile and rare biological samples.