{"title":"EasyDAM_V3: Automatic Fruit Labeling Based on Optimal Source Domain Selection and Data Synthesis via a Knowledge Graph.","authors":"Wenli Zhang, Yuxin Liu, Chao Zheng, Guoqiang Cui, Wei Guo","doi":"10.34133/plantphenomics.0067","DOIUrl":null,"url":null,"abstract":"Although deep learning-based fruit detection techniques are becoming popular, they require a large number of labeled datasets to support model training. Moreover, the manual labeling process is time-consuming and labor-intensive. We previously implemented a generative adversarial network-based method to reduce labeling costs. However, it does not consider fitness among more species. Methods of selecting the most suitable source domain dataset based on the fruit datasets of the target domain remain to be investigated. Moreover, current automatic labeling technology still requires manual labeling of the source domain dataset and cannot completely eliminate manual processes. Therefore, an improved EasyDAM_V3 model was proposed in this study as an automatic labeling method for additional classes of fruit. This study proposes both an optimal source domain establishment method based on a multidimensional spatial feature model to select the most suitable source domain, and a high-volume dataset construction method based on transparent background fruit image translation by constructing a knowledge graph of orchard scene hierarchy component synthesis rules. The EasyDAM_V3 model can automatically obtain fruit label information from the dataset, thereby eliminating manual labeling. To test the proposed method, pear was used as the selected optimal source domain, followed by orange, apple, and tomato as the target domain datasets. The results showed that the average precision of annotation reached 90.94%, 89.78%, and 90.84% for the target datasets, respectively. The EasyDAM_V3 model can obtain the optimal source domain in automatic labeling tasks, thus eliminating the manual labeling process and reducing associated costs and labor.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0067","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Although deep learning-based fruit detection techniques are becoming popular, they require a large number of labeled datasets to support model training. Moreover, the manual labeling process is time-consuming and labor-intensive. We previously implemented a generative adversarial network-based method to reduce labeling costs. However, it does not consider fitness among more species. Methods of selecting the most suitable source domain dataset based on the fruit datasets of the target domain remain to be investigated. Moreover, current automatic labeling technology still requires manual labeling of the source domain dataset and cannot completely eliminate manual processes. Therefore, an improved EasyDAM_V3 model was proposed in this study as an automatic labeling method for additional classes of fruit. This study proposes both an optimal source domain establishment method based on a multidimensional spatial feature model to select the most suitable source domain, and a high-volume dataset construction method based on transparent background fruit image translation by constructing a knowledge graph of orchard scene hierarchy component synthesis rules. The EasyDAM_V3 model can automatically obtain fruit label information from the dataset, thereby eliminating manual labeling. To test the proposed method, pear was used as the selected optimal source domain, followed by orange, apple, and tomato as the target domain datasets. The results showed that the average precision of annotation reached 90.94%, 89.78%, and 90.84% for the target datasets, respectively. The EasyDAM_V3 model can obtain the optimal source domain in automatic labeling tasks, thus eliminating the manual labeling process and reducing associated costs and labor.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.