{"title":"Inflachromene inhibits intimal hyperplasia through the HMGB1/2- regulated TLR4-NF-κB pathway","authors":"Shuai Teng, Zhaowei Zhu, Chenkai Wu, Yuhu He, Shenghua Zhou","doi":"10.1016/j.intimp.2023.110198","DOIUrl":null,"url":null,"abstract":"<div><p>The contractile-synthetic<!--> <!-->phenotypic<!--> <!-->conversion of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis, vascular restenosis, and hypertension. Our previous study explored the correlation between high mobility group box protein (HMGB) 1 and HMGB2 and neointimal hyperplasia after vascular injury. In the present study, we explore whether inflachromene (ICM), a novel inhibitor of the expression of both HMGB1 and HMGB2, modulates phenotypic changes in VSMCs and the mechanisms involved. Mice treated with ICM after carotid artery wire injury showed a decrease in excessive neointimal hyperplasia compared with that in the vehicle groups. In cultured VSMCs, pretreatment with ICM suppressed the angiotensin II (Ang II)–induced phenotypic conversion, proliferation, and migration. We discovered that ICM reduced the Ang II–induced upregulation of the expression of HMGB1 and HMGB2 and inhibited their shuttling between the nucleus and the cytosol. Mechanistically, Ang II–treated VSMCs exhibited higher levels of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) phosphorylation, which were attenuated by ICM. In addition, the NF-κB inhibitor Bay-117082 abolished the recombinant HMGB1–mediated VSMC phenotypic conversion, proliferation, and migration. Furthermore, ICM ameliorated the Ang II–induced increases in NAD[P]H oxidase expression, thereby attenuating the Ang II–induced proliferation and migration. These results reveal that ICM pretreatment attenuates Ang II–induced VSMC dedifferentiation, proliferation, and migration may by regulating the TLR4-NF-kB pathway. Thus, ICM is a potential therapy and preventive treatment for vascular proliferative diseases.</p></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"119 ","pages":"Article 110198"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576923005192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The contractile-synthetic phenotypic conversion of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis, vascular restenosis, and hypertension. Our previous study explored the correlation between high mobility group box protein (HMGB) 1 and HMGB2 and neointimal hyperplasia after vascular injury. In the present study, we explore whether inflachromene (ICM), a novel inhibitor of the expression of both HMGB1 and HMGB2, modulates phenotypic changes in VSMCs and the mechanisms involved. Mice treated with ICM after carotid artery wire injury showed a decrease in excessive neointimal hyperplasia compared with that in the vehicle groups. In cultured VSMCs, pretreatment with ICM suppressed the angiotensin II (Ang II)–induced phenotypic conversion, proliferation, and migration. We discovered that ICM reduced the Ang II–induced upregulation of the expression of HMGB1 and HMGB2 and inhibited their shuttling between the nucleus and the cytosol. Mechanistically, Ang II–treated VSMCs exhibited higher levels of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) phosphorylation, which were attenuated by ICM. In addition, the NF-κB inhibitor Bay-117082 abolished the recombinant HMGB1–mediated VSMC phenotypic conversion, proliferation, and migration. Furthermore, ICM ameliorated the Ang II–induced increases in NAD[P]H oxidase expression, thereby attenuating the Ang II–induced proliferation and migration. These results reveal that ICM pretreatment attenuates Ang II–induced VSMC dedifferentiation, proliferation, and migration may by regulating the TLR4-NF-kB pathway. Thus, ICM is a potential therapy and preventive treatment for vascular proliferative diseases.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.