Pangenomic Analysis of Nucleo-Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Molecular Evolution Pub Date : 2023-10-01 Epub Date: 2023-08-01 DOI:10.1007/s00239-023-10126-z
J A Campillo-Balderas, A Lazcano, W Cottom-Salas, R Jácome, A Becerra
{"title":"Pangenomic Analysis of Nucleo-Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process.","authors":"J A Campillo-Balderas,&nbsp;A Lazcano,&nbsp;W Cottom-Salas,&nbsp;R Jácome,&nbsp;A Becerra","doi":"10.1007/s00239-023-10126-z","DOIUrl":null,"url":null,"abstract":"<p><p>The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) infect a wide range of eukaryotic species, including amoeba, algae, fish, amphibia, arthropods, birds, and mammals. This group of viruses has linear or circular double-stranded DNA genomes whose size spans approximately one order of magnitude, from 100 to 2500 kbp. The ultimate origin of this peculiar group of viruses remains an open issue. Some have argued that NCLDVs' origin may lie in a bacteriophage ancestor that increased its genome size by subsequent recruitment of eukaryotic and bacterial genes. Others have suggested that NCLDVs families originated from cells that underwent an irreversible process of genome reduction. However, the hypothesis that a number of NCLDVs sequences have been recruited from the host genomes has been largely ignored. In the present work, we have performed pangenomic analyses of each of the seven known NCLDVs families. We show that these families' core- and shell genes have cellular homologs, supporting possible escaping-gene events as part of its evolution. Furthermore, the detection of sequences that belong to two protein families (small chain ribonucleotide reductase and Erv1/Air) and to one superfamily [2OG-Fe(II) oxygenases] that are for distribution in all NCLDVs core and shell clusters encoding for oxygen-dependent enzymes suggests that the highly conserved core these viruses originated after the Proterozoic Great Oxidation Event that transformed the terrestrial atmosphere 2.4-2.3 Ga ago.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10126-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) infect a wide range of eukaryotic species, including amoeba, algae, fish, amphibia, arthropods, birds, and mammals. This group of viruses has linear or circular double-stranded DNA genomes whose size spans approximately one order of magnitude, from 100 to 2500 kbp. The ultimate origin of this peculiar group of viruses remains an open issue. Some have argued that NCLDVs' origin may lie in a bacteriophage ancestor that increased its genome size by subsequent recruitment of eukaryotic and bacterial genes. Others have suggested that NCLDVs families originated from cells that underwent an irreversible process of genome reduction. However, the hypothesis that a number of NCLDVs sequences have been recruited from the host genomes has been largely ignored. In the present work, we have performed pangenomic analyses of each of the seven known NCLDVs families. We show that these families' core- and shell genes have cellular homologs, supporting possible escaping-gene events as part of its evolution. Furthermore, the detection of sequences that belong to two protein families (small chain ribonucleotide reductase and Erv1/Air) and to one superfamily [2OG-Fe(II) oxygenases] that are for distribution in all NCLDVs core and shell clusters encoding for oxygen-dependent enzymes suggests that the highly conserved core these viruses originated after the Proterozoic Great Oxidation Event that transformed the terrestrial atmosphere 2.4-2.3 Ga ago.

Abstract Image

核细胞质大DNA病毒的全基因组分析。保守的氧依赖酶的系统发育分布揭示了一个捕获基因的过程。
核细胞质大DNA病毒(NCLDV)感染广泛的真核生物物种,包括变形虫、藻类、鱼类、两栖动物、节肢动物、鸟类和哺乳动物。这组病毒具有线性或圆形双链DNA基因组,其大小大约跨越一个数量级,从100到2500 kbp。这种特殊病毒群的最终起源仍然是一个悬而未决的问题。一些人认为,NCLDV的起源可能在于噬菌体祖先通过随后招募真核生物和细菌基因来增加其基因组大小。其他人认为,NCLDV家族起源于经历了不可逆转的基因组减少过程的细胞。然而,从宿主基因组中招募了大量NCLDV序列的假设在很大程度上被忽视了。在目前的工作中,我们对七个已知的NCLDV家族中的每一个进行了全基因组分析。我们发现这些家族的核心和外壳基因具有细胞同源物,支持可能的逃逸基因事件作为其进化的一部分。此外对属于两个蛋白质家族(小链核糖核苷酸还原酶和Erv1/Air)和一个超家族[2OG-Fe(II)加氧酶]的序列的检测表明,这些病毒的高度保守的核心起源于元古界大氧化事件,该事件转化了2.4-2.3 Ga前的陆地大气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信