{"title":"A two-phase clustering approach for traffic accident black spots identification: integrated GIS-based processing and HDBSCAN model.","authors":"Dianhai Wang, Yulang Huang, Zhengyi Cai","doi":"10.1080/17457300.2022.2164309","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying black spots effectively and accurately is a pivotal and challenging task to improve road traffic safety. A novel black spot identification model is proposed by integrating the GIS-based processing with hierarchical density-based spatial clustering of applications with noise. Additionally, the optimal clustering parameters are determined based on an internal validation indicator called the density-based clustering validation index to minimize the impact of subjectivity in parameter selection. The model is validated by collecting 3536 accident data from 1 August to 31 October 2020 in Hangzhou, China, and eventually identifies 39 black spots. The results show that: (1) The number of accidents contained in black spots account for 75% of all accidents, while the length of network in the black spots only account for 23.26% of the total road network length. (2) Compared with the conventional density-based spatial clustering of applications with noise model and K-means model, the proposed model achieves the best performance with more accidents gathered per unit road length. (3) The sample survey with 6 onsite of the identified black spots indicates that the proposed model has high recognition accuracy and recommend these sites for further investigation.</p>","PeriodicalId":47014,"journal":{"name":"International Journal of Injury Control and Safety Promotion","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Injury Control and Safety Promotion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17457300.2022.2164309","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 2
Abstract
Identifying black spots effectively and accurately is a pivotal and challenging task to improve road traffic safety. A novel black spot identification model is proposed by integrating the GIS-based processing with hierarchical density-based spatial clustering of applications with noise. Additionally, the optimal clustering parameters are determined based on an internal validation indicator called the density-based clustering validation index to minimize the impact of subjectivity in parameter selection. The model is validated by collecting 3536 accident data from 1 August to 31 October 2020 in Hangzhou, China, and eventually identifies 39 black spots. The results show that: (1) The number of accidents contained in black spots account for 75% of all accidents, while the length of network in the black spots only account for 23.26% of the total road network length. (2) Compared with the conventional density-based spatial clustering of applications with noise model and K-means model, the proposed model achieves the best performance with more accidents gathered per unit road length. (3) The sample survey with 6 onsite of the identified black spots indicates that the proposed model has high recognition accuracy and recommend these sites for further investigation.
期刊介绍:
International Journal of Injury Control and Safety Promotion (formerly Injury Control and Safety Promotion) publishes articles concerning all phases of injury control, including prevention, acute care and rehabilitation. Specifically, this journal will publish articles that for each type of injury: •describe the problem •analyse the causes and risk factors •discuss the design and evaluation of solutions •describe the implementation of effective programs and policies The journal encompasses all causes of fatal and non-fatal injury, including injuries related to: •transport •school and work •home and leisure activities •sport •violence and assault