Oliver Schubert, Tobias Graf, Josef Schweiger, Jan-Frederik Güth, Thomas Sciuk, Kurt-Jürgen Erdelt
{"title":"Predictable esthetics in hybrid and resin-based CAD/CAM restorative materials: Translucency as a function of material thickness.","authors":"Oliver Schubert, Tobias Graf, Josef Schweiger, Jan-Frederik Güth, Thomas Sciuk, Kurt-Jürgen Erdelt","doi":"10.3290/j.ijcd.b3762733","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The CAM of esthetically pleasing monolithic dental restorations presents with specific challenges. One vital parameter to consider is the translucency of the materials. Previous studies have proven a correlation between translucency and material thickness for various all-ceramic materials. The aim of the present study was to assess and define the relationship between thickness and translucency in modern resin-based restorative materials.</p><p><strong>Materials and methods: </strong>Specimens fabricated from two resin nano-ceramics (Cerasmart, Lava Ultimate), a polymer-infiltrated ceramic network (Vita Enamic), and a polymethyl methacrylate (Telio CAD) were examined, representing these different material classes. For each material, 12 specimens (n = 12) were fabricated in five thicknesses (0.4, 0.7, 1.0, 1.3, and 1.6 mm; N = 240). The translucency was measured with a spectrophotometer. The total light transmittance for each specimen was calculated applying specialized software. Regression curves were fitted to the results and their coefficient of determination (R2) fit was determined.</p><p><strong>Results: </strong>Logarithmic regression curves showed the best R2 approximation (Cerasmart: R2 = 0.994; Vita Enamic: R2 = 0.978; Lava Ultimate: R2 = 0.997; Telio CAD: R2 = 0.997) to the light transmission values.</p><p><strong>Conclusions: </strong>The results of the present study indicate that the translucency of resin-based materials can be calculated using a mathematic approach to estimate their optical behavior. Cerasmart, Lava Ultimate, Vita Enamic, and Telio CAD exhibit a logarithmic relationship between material thickness and translucency. By determining material-specific coefficients for this logarithmic function, the resulting translucency can be computed for any given material thickness.</p>","PeriodicalId":48666,"journal":{"name":"International Journal of Computerized Dentistry","volume":"26 2","pages":"149-158"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computerized Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3290/j.ijcd.b3762733","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 2
Abstract
Aim: The CAM of esthetically pleasing monolithic dental restorations presents with specific challenges. One vital parameter to consider is the translucency of the materials. Previous studies have proven a correlation between translucency and material thickness for various all-ceramic materials. The aim of the present study was to assess and define the relationship between thickness and translucency in modern resin-based restorative materials.
Materials and methods: Specimens fabricated from two resin nano-ceramics (Cerasmart, Lava Ultimate), a polymer-infiltrated ceramic network (Vita Enamic), and a polymethyl methacrylate (Telio CAD) were examined, representing these different material classes. For each material, 12 specimens (n = 12) were fabricated in five thicknesses (0.4, 0.7, 1.0, 1.3, and 1.6 mm; N = 240). The translucency was measured with a spectrophotometer. The total light transmittance for each specimen was calculated applying specialized software. Regression curves were fitted to the results and their coefficient of determination (R2) fit was determined.
Results: Logarithmic regression curves showed the best R2 approximation (Cerasmart: R2 = 0.994; Vita Enamic: R2 = 0.978; Lava Ultimate: R2 = 0.997; Telio CAD: R2 = 0.997) to the light transmission values.
Conclusions: The results of the present study indicate that the translucency of resin-based materials can be calculated using a mathematic approach to estimate their optical behavior. Cerasmart, Lava Ultimate, Vita Enamic, and Telio CAD exhibit a logarithmic relationship between material thickness and translucency. By determining material-specific coefficients for this logarithmic function, the resulting translucency can be computed for any given material thickness.
期刊介绍:
This journal explores the myriad innovations in the emerging field of computerized dentistry and how to integrate them into clinical practice. The bulk of the journal is devoted to the science of computer-assisted dentistry, with research articles and clinical reports on all aspects of computer-based diagnostic and therapeutic applications, with special emphasis placed on CAD/CAM and image-processing systems. Articles also address the use of computer-based communication to support patient care, assess the quality of care, and enhance clinical decision making. The journal is presented in a bilingual format, with each issue offering three types of articles: science-based, application-based, and national society reports.