{"title":"Effects of hurdle height on lower limb joint kinematics and kinetics of male trainee sprinters during hurdle jumps.","authors":"Keitaro Seki, Shingo Hondo","doi":"10.1080/14763141.2023.2241852","DOIUrl":null,"url":null,"abstract":"<p><p>Hurdle jumps are frequently practiced in the field of sports training. The present study aimed to clarify the effect of hurdle heights on jumping height and joint kinematics, and kinetics during hurdle jumps. Ten male Japanese trainee sprinters performed at three heights (0.76, 0.91 and 1.06 m) of hurdle jumps and maximum countermovement jump (CMJ). Sagittal plane kinematics and ground reaction force were measured. Jump height significantly increased with hurdle heights (<i>η</i><sub><i>p</i></sub><sup><i>2</i></sup> = 0.65), but the difference in jump heights was small as compared to the difference in the hurdle heights. The contact time and mechanical work of the lower limb joints did not differ between different hurdle heights. The minimal angles of the knee (<i>η</i><sub><i>p</i></sub><sup><i>2</i></sup> <i> = 0.47</i>) and hip (<i>η</i><sub><i>p</i></sub><sup><i>2</i></sup> <i> = 0.70</i>) joints during the flight phase significantly decreased with higher hurdle heights. The load characteristics of the lower limb joint with higher hurdle heights would be similar to those with lower hurdle heights. In higher hurdle heights, since the increase in jump height was smaller than the increase in hurdle height, the legs were more flexed to clear the hurdle. Therefore, the hurdle height which is similar to the maximum CMJ height would be appropriate as a training load.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"3131-3140"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2023.2241852","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hurdle jumps are frequently practiced in the field of sports training. The present study aimed to clarify the effect of hurdle heights on jumping height and joint kinematics, and kinetics during hurdle jumps. Ten male Japanese trainee sprinters performed at three heights (0.76, 0.91 and 1.06 m) of hurdle jumps and maximum countermovement jump (CMJ). Sagittal plane kinematics and ground reaction force were measured. Jump height significantly increased with hurdle heights (ηp2 = 0.65), but the difference in jump heights was small as compared to the difference in the hurdle heights. The contact time and mechanical work of the lower limb joints did not differ between different hurdle heights. The minimal angles of the knee (ηp2 = 0.47) and hip (ηp2 = 0.70) joints during the flight phase significantly decreased with higher hurdle heights. The load characteristics of the lower limb joint with higher hurdle heights would be similar to those with lower hurdle heights. In higher hurdle heights, since the increase in jump height was smaller than the increase in hurdle height, the legs were more flexed to clear the hurdle. Therefore, the hurdle height which is similar to the maximum CMJ height would be appropriate as a training load.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.