Haleigh Conley, Rebecca L Till, Alix K Berglund, Samuel L Jones, M Katie Sheats
{"title":"A myristoylated alanine-rich C-kinase substrate (MARCKS) inhibitor peptide attenuates neutrophil outside-in β<sub>2</sub>-integrin activation and signaling.","authors":"Haleigh Conley, Rebecca L Till, Alix K Berglund, Samuel L Jones, M Katie Sheats","doi":"10.1080/19336918.2023.2233204","DOIUrl":null,"url":null,"abstract":"<p><p>MARCKS is an actin and PIP2-binding protein that plays an essential role in neutrophil migration and adhesion; however, the molecular details regarding MARCKS function in these processes remains unclear. Neutrophil adhesion and migration also require the cell surface receptors β<sub>2</sub>-integrins. We hypothesized that MARCKS inhibition would alter neutrophil β<sub>2</sub>-integrin activation and signaling. We utilized a MARCKS-targeting peptide to inhibit MARCKS in inside-out and outside-in β<sub>2</sub>-integrin activation in neutrophils. MANS-mediated MARCKS inhibition had no significant effect on inside-out β<sub>2</sub>-integrin activation. MANS treatment significantly attenuated ICAM-1/Mn<sup>2+</sup>-stimulated static adhesion, cell spreading and β<sub>2</sub>-integrin clustering, suggesting a role for MARCKS function in outside-in β<sub>2</sub>-integrin activation. Additional work is needed to better understand the molecular mechanisms of MARCKS role in outside-in β<sub>2</sub>-integrin activation and signaling.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"17 1","pages":"1-16"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/1c/KCAM_17_2233204.PMC10348033.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2023.2233204","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MARCKS is an actin and PIP2-binding protein that plays an essential role in neutrophil migration and adhesion; however, the molecular details regarding MARCKS function in these processes remains unclear. Neutrophil adhesion and migration also require the cell surface receptors β2-integrins. We hypothesized that MARCKS inhibition would alter neutrophil β2-integrin activation and signaling. We utilized a MARCKS-targeting peptide to inhibit MARCKS in inside-out and outside-in β2-integrin activation in neutrophils. MANS-mediated MARCKS inhibition had no significant effect on inside-out β2-integrin activation. MANS treatment significantly attenuated ICAM-1/Mn2+-stimulated static adhesion, cell spreading and β2-integrin clustering, suggesting a role for MARCKS function in outside-in β2-integrin activation. Additional work is needed to better understand the molecular mechanisms of MARCKS role in outside-in β2-integrin activation and signaling.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.