V Preethi, Shradha Nair, S T Ramesh, R Gandhimathi
{"title":"Exploration of the performance of iron-based superhydrophilic meshes for oil-water separation.","authors":"V Preethi, Shradha Nair, S T Ramesh, R Gandhimathi","doi":"10.1080/10934529.2023.2236534","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the oil-water separation capability of iron-based superhydrophilic meshes. It also intends to provide an optimistic view of their potential for industrial application. Oil-water separation performance of the 150 mesh, 300 mesh, and 400 mesh is primarily examined by analyzing the efficiency and speediness of separation as well as the limit of oil intrusion using petroleum based oils. The superhydrophilic meshes are further applied for oil-water separation of locomotive wash effluent. The superhydrophilic meshes showed good oil-water separation behavior. The 300 mesh is observed to have superior separation performance. It is also tested to have good reusability and resistance in harsh conditions. The separation effectiveness of 94.7%, reduced turbidity of 21.8 NTU, and chemical oxygen demand of around 70 ppm, along with reasonable flux and intrusion pressure values of 73.28 Lm<sup>-2</sup>min<sup>-1</sup> and 0.848 kPa, respectively, are noticed for the separation study conducted for locomotive wash effluent using the designated superhydrophilic mesh. This study hence as well demonstrates a prospective future of superhydrophilic mesh for practical utility.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":"58 9","pages":"793-804"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2236534","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the oil-water separation capability of iron-based superhydrophilic meshes. It also intends to provide an optimistic view of their potential for industrial application. Oil-water separation performance of the 150 mesh, 300 mesh, and 400 mesh is primarily examined by analyzing the efficiency and speediness of separation as well as the limit of oil intrusion using petroleum based oils. The superhydrophilic meshes are further applied for oil-water separation of locomotive wash effluent. The superhydrophilic meshes showed good oil-water separation behavior. The 300 mesh is observed to have superior separation performance. It is also tested to have good reusability and resistance in harsh conditions. The separation effectiveness of 94.7%, reduced turbidity of 21.8 NTU, and chemical oxygen demand of around 70 ppm, along with reasonable flux and intrusion pressure values of 73.28 Lm-2min-1 and 0.848 kPa, respectively, are noticed for the separation study conducted for locomotive wash effluent using the designated superhydrophilic mesh. This study hence as well demonstrates a prospective future of superhydrophilic mesh for practical utility.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.