Exploration of the performance of iron-based superhydrophilic meshes for oil-water separation.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-01-01 Epub Date: 2023-07-17 DOI:10.1080/10934529.2023.2236534
V Preethi, Shradha Nair, S T Ramesh, R Gandhimathi
{"title":"Exploration of the performance of iron-based superhydrophilic meshes for oil-water separation.","authors":"V Preethi,&nbsp;Shradha Nair,&nbsp;S T Ramesh,&nbsp;R Gandhimathi","doi":"10.1080/10934529.2023.2236534","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the oil-water separation capability of iron-based superhydrophilic meshes. It also intends to provide an optimistic view of their potential for industrial application. Oil-water separation performance of the 150 mesh, 300 mesh, and 400 mesh is primarily examined by analyzing the efficiency and speediness of separation as well as the limit of oil intrusion using petroleum based oils. The superhydrophilic meshes are further applied for oil-water separation of locomotive wash effluent. The superhydrophilic meshes showed good oil-water separation behavior. The 300 mesh is observed to have superior separation performance. It is also tested to have good reusability and resistance in harsh conditions. The separation effectiveness of 94.7%, reduced turbidity of 21.8 NTU, and chemical oxygen demand of around 70 ppm, along with reasonable flux and intrusion pressure values of 73.28 Lm<sup>-2</sup>min<sup>-1</sup> and 0.848 kPa, respectively, are noticed for the separation study conducted for locomotive wash effluent using the designated superhydrophilic mesh. This study hence as well demonstrates a prospective future of superhydrophilic mesh for practical utility.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2236534","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the oil-water separation capability of iron-based superhydrophilic meshes. It also intends to provide an optimistic view of their potential for industrial application. Oil-water separation performance of the 150 mesh, 300 mesh, and 400 mesh is primarily examined by analyzing the efficiency and speediness of separation as well as the limit of oil intrusion using petroleum based oils. The superhydrophilic meshes are further applied for oil-water separation of locomotive wash effluent. The superhydrophilic meshes showed good oil-water separation behavior. The 300 mesh is observed to have superior separation performance. It is also tested to have good reusability and resistance in harsh conditions. The separation effectiveness of 94.7%, reduced turbidity of 21.8 NTU, and chemical oxygen demand of around 70 ppm, along with reasonable flux and intrusion pressure values of 73.28 Lm-2min-1 and 0.848 kPa, respectively, are noticed for the separation study conducted for locomotive wash effluent using the designated superhydrophilic mesh. This study hence as well demonstrates a prospective future of superhydrophilic mesh for practical utility.

铁基超亲水性油水分离网的性能探索。
本研究考察了铁基超亲水网的油水分离性能。它还打算对它们的工业应用潜力提供乐观的看法。通过分析150目、300目和400目的油水分离效率、分离速度以及石油基油的侵油极限,初步考察了它们的油水分离性能。将超亲水性筛网进一步应用于机车清洗废水的油水分离。超亲水性网孔表现出良好的油水分离性能。观察到300目具有优异的分离性能。还测试了它在恶劣条件下具有良好的可重复使用性和耐受性。分离效率94.7%,降低浊度21.8 NTU,化学需氧量约70 ppm,以及73.28的合理流量和入侵压力值 Lm-2min-1和0.848 对于使用指定的超亲水网对机车洗涤废水进行的分离研究,分别注意到kPa。因此,这项研究也证明了超亲水性网状物的实用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信