Sorption of thiamin (vitamin B1) onto micro(nano)plastics: pH dependence and sorption models.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mehmet Kilincer, Hasan Saygin, Mustafa Ozyurek, Asli Baysal
{"title":"Sorption of thiamin (vitamin B1) onto micro(nano)plastics: pH dependence and sorption models.","authors":"Mehmet Kilincer,&nbsp;Hasan Saygin,&nbsp;Mustafa Ozyurek,&nbsp;Asli Baysal","doi":"10.1080/10934529.2023.2216123","DOIUrl":null,"url":null,"abstract":"<p><p>As the carrier of various inorganics and organics from various media, micro(nano)plastics have an impact on the environment and human health. Recently, many studies have examined the sorption of various organics including antibiotics. However, while vitamins have critical roles in the environment and microsystems from humans to plant life, the sorption of vitamins onto micro(nano)plastics are still uninvestigated. Therefore, the aim of this study was to examine the sorption of vitamin B1 onto various micro(nano)plastics from food packages under different pHs using batch technique; sorption kinetics and isotherms models were investigated as well. The results indicated that higher capacities were obtained between 360 min to 1440 min in polypropylene and polyethylene micro(nano)plastics, and similar kinetic behaviors observed in different pHs. However, the sorption responses (sorption capacity, equilibrium time) of polyethylene terephthalate and polystyrene were varied. The sorption kinetics between vitamin B1 and micro(nano)plastics showed that the pseudo-first-order model was better to fit for polyethylene terephthalate and polystyrene compared to the pseudo-second-order kinetics, however it was changed for polypropylene and polyethylene. Moreover, the obtained results suggest a complex nature of vitamin B1 sorption, including both chemical and physical sorption occur under various pHs and polymer types.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2216123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the carrier of various inorganics and organics from various media, micro(nano)plastics have an impact on the environment and human health. Recently, many studies have examined the sorption of various organics including antibiotics. However, while vitamins have critical roles in the environment and microsystems from humans to plant life, the sorption of vitamins onto micro(nano)plastics are still uninvestigated. Therefore, the aim of this study was to examine the sorption of vitamin B1 onto various micro(nano)plastics from food packages under different pHs using batch technique; sorption kinetics and isotherms models were investigated as well. The results indicated that higher capacities were obtained between 360 min to 1440 min in polypropylene and polyethylene micro(nano)plastics, and similar kinetic behaviors observed in different pHs. However, the sorption responses (sorption capacity, equilibrium time) of polyethylene terephthalate and polystyrene were varied. The sorption kinetics between vitamin B1 and micro(nano)plastics showed that the pseudo-first-order model was better to fit for polyethylene terephthalate and polystyrene compared to the pseudo-second-order kinetics, however it was changed for polypropylene and polyethylene. Moreover, the obtained results suggest a complex nature of vitamin B1 sorption, including both chemical and physical sorption occur under various pHs and polymer types.

硫胺素(维生素B1)在微(纳米)塑料上的吸附:pH依赖性和吸附模型。
微(纳米)塑料作为各种介质中各种无机物和有机物的载体,对环境和人体健康产生影响。近年来,许多研究对包括抗生素在内的各种有机物的吸附进行了研究。然而,尽管维生素在环境和从人类到植物的微系统中起着至关重要的作用,但维生素在微(纳米)塑料上的吸附仍未得到研究。因此,本研究的目的是研究维生素B1在不同ph值下在食品包装上的各种微(纳)塑料上的吸附;研究了吸附动力学和等温线模型。结果表明,聚丙烯和聚乙烯微(纳)塑料在360 ~ 1440 min内获得较高的容量,且在不同ph值下的动力学行为相似。然而,聚对苯二甲酸乙二醇酯和聚苯乙烯的吸附响应(吸附容量、平衡时间)是不同的。对维生素B1与微(纳米)塑料的吸附动力学研究表明,与伪二级动力学相比,准一级动力学模型更适合聚对苯二甲酸乙二醇酯和聚苯乙烯,而对聚丙烯和聚乙烯则不同。此外,所得结果表明维生素B1的吸附具有复杂的性质,包括在不同ph值和聚合物类型下发生的化学和物理吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信