Smart implants: 4D-printed shape-morphing scaffolds for medical implantation.

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Guiwen Qu, Jinjian Huang, Guosheng Gu, Zongan Li, Xiuwen Wu, Jianan Ren
{"title":"Smart implants: 4D-printed shape-morphing scaffolds for medical implantation.","authors":"Guiwen Qu,&nbsp;Jinjian Huang,&nbsp;Guosheng Gu,&nbsp;Zongan Li,&nbsp;Xiuwen Wu,&nbsp;Jianan Ren","doi":"10.18063/ijb.764","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical implants have recently shown excellent application potential in tissue repair and replacement. Applying three-dimensional (3D) printing to implant scaffold fabrication can help to address individual needs more precisely. Fourdimensional (4D) printing emerges rapidly based on the development of shape-responsive materials and design methods, which makes the production of dynamic functional implants possible. Smart implants can be pre-designed to respond to endogenous or exogenous stimuli and perform seamless integration with regular/ irregular tissue defects, defect-luminal organs, or curved structures via programmed shape morphing. At the same time, they offer great advantages in minimally invasive surgery due to the small-to-large volume transition. In addition, 4D-printed cellular scaffolds can generate extracellular matrix (ECM)-mimetic structures that interact with the contacting cells, expanding the possible sources of tissue/organ grafts and substitutes. This review summarizes the typical technologies and materials of 4D-printed scaffolds, and the programming designs and applications of these scaffolds are further highlighted. Finally, we propose the prospects and outlook of 4D-printed shape-morphing implants.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 5","pages":"764"},"PeriodicalIF":6.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/fe/IJB-9-5-764.PMC10339452.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18063/ijb.764","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Biomedical implants have recently shown excellent application potential in tissue repair and replacement. Applying three-dimensional (3D) printing to implant scaffold fabrication can help to address individual needs more precisely. Fourdimensional (4D) printing emerges rapidly based on the development of shape-responsive materials and design methods, which makes the production of dynamic functional implants possible. Smart implants can be pre-designed to respond to endogenous or exogenous stimuli and perform seamless integration with regular/ irregular tissue defects, defect-luminal organs, or curved structures via programmed shape morphing. At the same time, they offer great advantages in minimally invasive surgery due to the small-to-large volume transition. In addition, 4D-printed cellular scaffolds can generate extracellular matrix (ECM)-mimetic structures that interact with the contacting cells, expanding the possible sources of tissue/organ grafts and substitutes. This review summarizes the typical technologies and materials of 4D-printed scaffolds, and the programming designs and applications of these scaffolds are further highlighted. Finally, we propose the prospects and outlook of 4D-printed shape-morphing implants.

Abstract Image

Abstract Image

Abstract Image

智能植入物:用于医疗植入的3d打印变形支架。
近年来,生物医学植入物在组织修复和替代方面显示出良好的应用潜力。将三维(3D)打印应用于植入支架制造可以帮助更精确地满足个人需求。基于形状响应材料和设计方法的发展,四维(4D)打印迅速出现,这使得生产动态功能植入物成为可能。智能植入物可以预先设计以响应内源性或外源性刺激,并通过编程形状变形与规则/不规则组织缺陷,缺陷腔器官或弯曲结构进行无缝集成。同时,由于体积由小到大的转变,在微创手术中具有很大的优势。此外,3d打印的细胞支架可以产生与接触细胞相互作用的细胞外基质(ECM)模拟结构,扩大了组织/器官移植和替代品的可能来源。本文综述了3d打印支架的典型技术和材料,并进一步重点介绍了这些支架的编程设计和应用。最后,展望了3d打印整形植入物的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信