Self-grafting-induced epigenetic changes leading to drought stress tolerance in tomato plants.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY
Maria Isabel Fuentes-Merlos, Masaru Bamba, Shusei Sato, Atsushi Higashitani
{"title":"Self-grafting-induced epigenetic changes leading to drought stress tolerance in tomato plants.","authors":"Maria Isabel Fuentes-Merlos,&nbsp;Masaru Bamba,&nbsp;Shusei Sato,&nbsp;Atsushi Higashitani","doi":"10.1093/dnares/dsad016","DOIUrl":null,"url":null,"abstract":"<p><p>Grafting is widely used as a method to increase stress tolerance in good fruiting lines of Solanaceae plants. However, little is known about how grafting, affects epigenetic modifications and leads to stress tolerance, especially within the same line. Here, we studied the effects of self-grafting in tomato plants on histone and DNA modifications and changes in gene expression related to drought stress. We found that at the three-leaf stage, 1 week after self-grafting, histone H3 K4 trimethylation and K27 trimethylation changes were observed in more than 500 genes each, and DNA methylation changes in more than 5,000 gene regions at the shoot apex compared to the non-grafted control. In addition, two weeks after the epigenomic changes, global expression changes continued to be observed at the shoot apex in several genes related to the metabolic process of nitrogen compounds, responses to stimulus, chromosome organization, cell cycle-related genes, and regulation of hormone levels. Finally, these grafted seedlings acquired remarkable drought tolerance, suggesting that epigenomic modifications during the wound-healing process mitigate stress tolerance in tomato plants.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"30 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsad016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Grafting is widely used as a method to increase stress tolerance in good fruiting lines of Solanaceae plants. However, little is known about how grafting, affects epigenetic modifications and leads to stress tolerance, especially within the same line. Here, we studied the effects of self-grafting in tomato plants on histone and DNA modifications and changes in gene expression related to drought stress. We found that at the three-leaf stage, 1 week after self-grafting, histone H3 K4 trimethylation and K27 trimethylation changes were observed in more than 500 genes each, and DNA methylation changes in more than 5,000 gene regions at the shoot apex compared to the non-grafted control. In addition, two weeks after the epigenomic changes, global expression changes continued to be observed at the shoot apex in several genes related to the metabolic process of nitrogen compounds, responses to stimulus, chromosome organization, cell cycle-related genes, and regulation of hormone levels. Finally, these grafted seedlings acquired remarkable drought tolerance, suggesting that epigenomic modifications during the wound-healing process mitigate stress tolerance in tomato plants.

Abstract Image

Abstract Image

Abstract Image

番茄植株自嫁接诱导的抗干旱表观遗传变化。
嫁接作为一种提高茄科优良结实系抗逆性的方法被广泛应用。然而,对于嫁接如何影响表观遗传修饰并导致胁迫耐受性,特别是在同一品系内,知之甚少。本研究研究了番茄植株自嫁接对干旱胁迫下组蛋白和DNA修饰及基因表达变化的影响。我们发现,在三叶期,自嫁接后1周,与未嫁接对照相比,茎尖组蛋白H3 K4三甲基化和K27三甲基化各有500多个基因发生变化,超过5000个基因区域的DNA甲基化发生变化。此外,在表观基因组改变两周后,在茎尖处,与氮化合物代谢过程、刺激反应、染色体组织、细胞周期相关基因和激素水平调节相关的几个基因的表达继续发生全局变化。最后,这些嫁接的幼苗获得了显著的抗旱性,这表明在伤口愈合过程中的表观基因组修饰减轻了番茄植株的抗旱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信