Detection of Hybrid Fusion Transcripts, Aberrant Transcript Expression, and Specific Single Nucleotide Variants in Acute Leukemia and Myeloid Disorders with Recurrent Gene Rearrangements.
Yuewei Li, Kaifang Deng, Justin Kaner, Julia T Geyer, Madhu Ouseph, Frank Fang, Kemin Xu, Gail Roboz, Michael J Kluk
{"title":"Detection of Hybrid Fusion Transcripts, Aberrant Transcript Expression, and Specific Single Nucleotide Variants in Acute Leukemia and Myeloid Disorders with Recurrent Gene Rearrangements.","authors":"Yuewei Li, Kaifang Deng, Justin Kaner, Julia T Geyer, Madhu Ouseph, Frank Fang, Kemin Xu, Gail Roboz, Michael J Kluk","doi":"10.1159/000532085","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A variety of gene rearrangements and molecular alterations are key drivers in the pathobiology of acute leukemia and myeloid disorders; current classification systems increasingly incorporate these findings in diagnostic algorithms. Therefore, clinical laboratories require versatile tools, which can detect an increasing number and variety of molecular and cytogenetic alterations of clinical significance.</p><p><strong>Methods: </strong>We validated an RNA-based next-generation sequencing (NGS) assay that enables the detection of: (i) numerous hybrid fusion transcripts (including rare/novel gene partners), (ii) aberrantly expressed EVI1 (MECOM) and IKZF1 (Del exons 4-7) transcripts, and (iii) hotspot variants in KIT, ABL1, NPM1 (relevant in the context of gene rearrangement status).</p><p><strong>Results: </strong>For hybrid fusion transcripts, the assay showed 98-100% concordance for known positive and negative samples, with an analytical sensitivity (i.e., limit of detection) of approximately 0.8% cells. Samples with underlying EVI1 (MECOM) translocations demonstrated increased EVI1 (MECOM) expression. Aberrant IKZF1 (Del exons 4-7) transcripts detectable with the assay were also present on orthogonal reverse transcription PCR. Specific hotspot mutations in KIT, ABL1, and NPM1 detected with the assay showed 100% concordance with orthogonal testing. Lastly, several illustrative samples are included to highlight the assay's clinically relevant contributions to patient workup.</p><p><strong>Conclusion: </strong>Through its ability to simultaneously detect various gene rearrangements, aberrantly expressed transcripts, and hotspot mutations, this RNA-based NGS assay is a valuable tool for clinical laboratories to supplement other molecular and cytogenetic methods used in the diagnostic workup and in clinical research for patients with acute leukemia and myeloid disorders.</p>","PeriodicalId":19805,"journal":{"name":"Pathobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000532085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: A variety of gene rearrangements and molecular alterations are key drivers in the pathobiology of acute leukemia and myeloid disorders; current classification systems increasingly incorporate these findings in diagnostic algorithms. Therefore, clinical laboratories require versatile tools, which can detect an increasing number and variety of molecular and cytogenetic alterations of clinical significance.
Methods: We validated an RNA-based next-generation sequencing (NGS) assay that enables the detection of: (i) numerous hybrid fusion transcripts (including rare/novel gene partners), (ii) aberrantly expressed EVI1 (MECOM) and IKZF1 (Del exons 4-7) transcripts, and (iii) hotspot variants in KIT, ABL1, NPM1 (relevant in the context of gene rearrangement status).
Results: For hybrid fusion transcripts, the assay showed 98-100% concordance for known positive and negative samples, with an analytical sensitivity (i.e., limit of detection) of approximately 0.8% cells. Samples with underlying EVI1 (MECOM) translocations demonstrated increased EVI1 (MECOM) expression. Aberrant IKZF1 (Del exons 4-7) transcripts detectable with the assay were also present on orthogonal reverse transcription PCR. Specific hotspot mutations in KIT, ABL1, and NPM1 detected with the assay showed 100% concordance with orthogonal testing. Lastly, several illustrative samples are included to highlight the assay's clinically relevant contributions to patient workup.
Conclusion: Through its ability to simultaneously detect various gene rearrangements, aberrantly expressed transcripts, and hotspot mutations, this RNA-based NGS assay is a valuable tool for clinical laboratories to supplement other molecular and cytogenetic methods used in the diagnostic workup and in clinical research for patients with acute leukemia and myeloid disorders.
期刊介绍:
''Pathobiology'' offers a valuable platform for the publication of high-quality original research into the mechanisms underlying human disease. Aiming to serve as a bridge between basic biomedical research and clinical medicine, the journal welcomes articles from scientific areas such as pathology, oncology, anatomy, virology, internal medicine, surgery, cell and molecular biology, and immunology. Published bimonthly, ''Pathobiology'' features original research papers and reviews on translational research. The journal offers the possibility to publish proceedings of meetings dedicated to one particular topic.