Optimization of BMI-Based Images for Overweight and Obese Patients - Implications on Image Quality, Quantification, and Radiation Dose in Whole Body 18F-FDG PET/CT Imaging.
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Optimization of BMI-Based Images for Overweight and Obese Patients - Implications on Image Quality, Quantification, and Radiation Dose in Whole Body <sup>18</sup>F-FDG PET/CT Imaging.","authors":"Yassine Bouchareb, Naima Tag, Hajir Sulaiman, Khulood Al-Riyami, Zabah Jawa, Humoud Al-Dhuhli","doi":"10.1007/s13139-023-00795-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In PET/CT imaging, the activity of the <sup>18</sup>F-FDG activity is injected either based on patient body weight (BW) or body mass index (BMI). The purpose of this study was to optimise BMI-based whole body <sup>18</sup>F-FDG PET images obtained from overweight and obese patients and assess their image quality, quantitative value and radiation dose in comparison to BW-based images.</p><p><strong>Methods: </strong>The NEMA-IEC-body phantom was scanned using the mCT 128-slice scanner. The spheres and background were filed with F-18 activity. Spheres-to-background ratio was 4:1. Data was reconstructed using the OSEM-TOF-PSF routine reconstruction. The optimization was performed by varying number of iterations and subsets, filter's size and type, and matrix size. The optimized reconstruction was applied to 17 patients' datasets. The optimized BMI-, routine BMI- and the BW-based images were compared visually and using contrast-to-noise ratio (CNR) and standardized uptake values (SUV) measurements.</p><p><strong>Results: </strong>The visual assessment of the optimized phantom images showed better image quality and contrast-recovery-coefficients (CRCs) values compared to the routine reconstruction. Using patient data, the optimized BMI-based images provided better image quality compared to BW-based images in 87.5% of the overweight cases and 66.7% for obese cases. The optimized BMI-based images resulted in more than 50% reduction of radiation dose. No significant differences were found between the three series of images in SUV measurements.</p><p><strong>Conclusion: </strong>The optimized BMI-based approach using 1 iteration, 21 subsets, and 3 mm Hamming filter improves image quality, reduces radiation dose, and provides, at least, similar quantification compared to the BW-based approach for overweight and obese patients.</p>","PeriodicalId":19384,"journal":{"name":"Nuclear Medicine and Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Medicine and Molecular Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13139-023-00795-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In PET/CT imaging, the activity of the 18F-FDG activity is injected either based on patient body weight (BW) or body mass index (BMI). The purpose of this study was to optimise BMI-based whole body 18F-FDG PET images obtained from overweight and obese patients and assess their image quality, quantitative value and radiation dose in comparison to BW-based images.
Methods: The NEMA-IEC-body phantom was scanned using the mCT 128-slice scanner. The spheres and background were filed with F-18 activity. Spheres-to-background ratio was 4:1. Data was reconstructed using the OSEM-TOF-PSF routine reconstruction. The optimization was performed by varying number of iterations and subsets, filter's size and type, and matrix size. The optimized reconstruction was applied to 17 patients' datasets. The optimized BMI-, routine BMI- and the BW-based images were compared visually and using contrast-to-noise ratio (CNR) and standardized uptake values (SUV) measurements.
Results: The visual assessment of the optimized phantom images showed better image quality and contrast-recovery-coefficients (CRCs) values compared to the routine reconstruction. Using patient data, the optimized BMI-based images provided better image quality compared to BW-based images in 87.5% of the overweight cases and 66.7% for obese cases. The optimized BMI-based images resulted in more than 50% reduction of radiation dose. No significant differences were found between the three series of images in SUV measurements.
Conclusion: The optimized BMI-based approach using 1 iteration, 21 subsets, and 3 mm Hamming filter improves image quality, reduces radiation dose, and provides, at least, similar quantification compared to the BW-based approach for overweight and obese patients.
期刊介绍:
Nuclear Medicine and Molecular Imaging (Nucl Med Mol Imaging) is an official journal of the Korean Society of Nuclear Medicine, which bimonthly publishes papers on February, April, June, August, October, and December about nuclear medicine and related sciences such as radiochemistry, radiopharmacy, dosimetry and pharmacokinetics / pharmacodynamics of radiopharmaceuticals, nuclear and molecular imaging analysis, nuclear and molecular imaging instrumentation, radiation biology and radionuclide therapy. The journal specially welcomes works of artificial intelligence applied to nuclear medicine. The journal will also welcome original works relating to molecular imaging research such as the development of molecular imaging probes, reporter imaging assays, imaging cell trafficking, imaging endo(exo)genous gene expression, and imaging signal transduction. Nucl Med Mol Imaging publishes the following types of papers: original articles, reviews, case reports, editorials, interesting images, and letters to the editor.
The Korean Society of Nuclear Medicine (KSNM)
KSNM is a scientific and professional organization founded in 1961 and a member of the Korean Academy of Medical Sciences of the Korean Medical Association which was established by The Medical Services Law. The aims of KSNM are the promotion of nuclear medicine and cooperation of each member. The business of KSNM includes holding academic meetings and symposia, the publication of journals and books, planning and research of promoting science and health, and training and qualification of nuclear medicine specialists.