Surviving in an Acidifying Ocean: Acid-Base Physiology and Energetics of the Sea Urchin Larva.

IF 5.3 2区 医学 Q1 PHYSIOLOGY
Marian Y Hu, Meike Stumpp
{"title":"Surviving in an Acidifying Ocean: Acid-Base Physiology and Energetics of the Sea Urchin Larva.","authors":"Marian Y Hu,&nbsp;Meike Stumpp","doi":"10.1152/physiol.00007.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO<sub>2</sub>-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"38 5","pages":"0"},"PeriodicalIF":5.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00007.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO2-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.

在酸化的海洋中生存:海胆幼体的酸碱生理学和能量学。
一个多世纪以来,生物学家一直用海胆的幼虫来研究动物的发育和进化。令人惊讶的是,关于这种小型浮游生物的生理学信息很少。然而,在人为co2驱动的海洋酸化(OA)背景下,这种海洋模式生物的膜转运生理学和能量学在过去十年中受到了相当大的关注。这导致了新的、令人兴奋的生理系统的发现,包括一个高碱性的消化道和产生幼虫骨骼的钙化初级间充质细胞。这些生理系统直接关系到生物体受到OA挑战时的能量学。本文综述了海胆幼虫膜转运生理学和能量学的最新进展,指出了在快速气候变化时期海洋生理学领域的新问题,并指出了未来的重要方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信