Embryonic pattern of cartilaginous head development in the European toad, Bufo bufo

IF 1.8 3区 生物学 Q3 DEVELOPMENTAL BIOLOGY
Paul Lukas
{"title":"Embryonic pattern of cartilaginous head development in the European toad, Bufo bufo","authors":"Paul Lukas","doi":"10.1002/jez.b.23214","DOIUrl":null,"url":null,"abstract":"<p>The craniofacial skeleton of vertebrates is a major innovation of the whole clade. Its development and composition requires a precisely orchestrated sequence of chondrification events which lead to a fully functional skeleton. Sequential information on the precise timing and sequence of embryonic cartilaginous head development are available for a growing number of vertebrates. This enables a more and more comprehensive comparison of the evolutionary trends within and among different vertebrate clades. This comparison of sequential patterns of cartilage formation enables insights into the evolution of development of the cartilaginous head skeleton. The cartilaginous sequence of head formation of three basal anurans (<i>Xenopus laevis</i>, <i>Bombina orientalis</i>, <i>Discoglossus scovazzi</i>) was investigated so far. This study investigates the sequence and timing of larval cartilaginous development of the head skeleton from the appearance of mesenchymal Anlagen until the premetamorphic larvae in the neobatrachian species <i>Bufo bufo</i>. Clearing and staining, histology, and 3D reconstruction enabled the tracking of 75 cartilaginous structures and the illustration of the sequential changes of the skull as well as the identification of evolutionary trends of sequential cartilage formation in the anuran head. The anuran viscerocranium does not chondrify in the ancestral anterior to posterior direction and the neurocranial elements do not chondrify in posterior to anterior direction. Instead, the viscerocranial and neurocranial development is mosaic-like and differs greatly from the gnathostome sequence. Strict ancestral anterior to posterior developmental sequences can be observed within the branchial basket. Thus, this data is the basis for further comparative developmental studies of anuran skeletal development.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23214","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23214","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The craniofacial skeleton of vertebrates is a major innovation of the whole clade. Its development and composition requires a precisely orchestrated sequence of chondrification events which lead to a fully functional skeleton. Sequential information on the precise timing and sequence of embryonic cartilaginous head development are available for a growing number of vertebrates. This enables a more and more comprehensive comparison of the evolutionary trends within and among different vertebrate clades. This comparison of sequential patterns of cartilage formation enables insights into the evolution of development of the cartilaginous head skeleton. The cartilaginous sequence of head formation of three basal anurans (Xenopus laevis, Bombina orientalis, Discoglossus scovazzi) was investigated so far. This study investigates the sequence and timing of larval cartilaginous development of the head skeleton from the appearance of mesenchymal Anlagen until the premetamorphic larvae in the neobatrachian species Bufo bufo. Clearing and staining, histology, and 3D reconstruction enabled the tracking of 75 cartilaginous structures and the illustration of the sequential changes of the skull as well as the identification of evolutionary trends of sequential cartilage formation in the anuran head. The anuran viscerocranium does not chondrify in the ancestral anterior to posterior direction and the neurocranial elements do not chondrify in posterior to anterior direction. Instead, the viscerocranial and neurocranial development is mosaic-like and differs greatly from the gnathostome sequence. Strict ancestral anterior to posterior developmental sequences can be observed within the branchial basket. Thus, this data is the basis for further comparative developmental studies of anuran skeletal development.

Abstract Image

欧洲蟾蜍软骨头部发育的胚胎模式。
脊椎动物的颅面骨骼是整个分支的一个重大创新。它的发展和组成需要一个精确编排的软骨化事件序列,从而形成一个功能齐全的骨骼。越来越多的脊椎动物可以获得胚胎软骨头发育的精确时间和顺序的序列信息。这使得能够对不同脊椎动物分支内部和之间的进化趋势进行越来越全面的比较。这种软骨形成顺序模式的比较使我们能够深入了解软骨头部骨骼发育的演变。迄今为止,研究了三种基底无核动物(非洲爪蟾、东方蟾蜍、scovazzi盘舌蟾)头部形成的软骨序列。本研究探讨了从间充质Anlagen出现到新腹足类蟾蜍预变形幼虫头部骨骼软骨发育的顺序和时间。通过清除和染色、组织学和3D重建,可以跟踪75个软骨结构,说明颅骨的顺序变化,并确定无核头部软骨顺序形成的进化趋势。无核内脏颅骨不在祖先的前后方向上软骨化,神经颅元件不在前后方向上球粒化。相反,内脏-颅骨和神经颅的发育是镶嵌状的,与颚体序列有很大不同。在鳃篮内可以观察到严格的祖先前后发育序列。因此,这些数据是进一步比较无核骨骼发育研究的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms. The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB. We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信