Thore Dietrich, Stephan Theodor Bujak, Thorsten Keller, Bernhard Schnackenburg, Riad Bourayou, Rolf Gebker, Kristof Graf, Eckart Fleck
{"title":"In Vivo Fluorine Imaging Using 1.5 Tesla MRI for Depiction of Experimental Myocarditis in a Rodent Animal Model.","authors":"Thore Dietrich, Stephan Theodor Bujak, Thorsten Keller, Bernhard Schnackenburg, Riad Bourayou, Rolf Gebker, Kristof Graf, Eckart Fleck","doi":"10.1155/2023/4659041","DOIUrl":null,"url":null,"abstract":"<p><p>The usefulness of perfluorocarbon nanoemulsions for the imaging of experimental myocarditis has been demonstrated in a high-field 9.4 Tesla MRI scanner. Our proof-of-concept study investigated the imaging capacity of PFC-based <sup>19</sup>F/<sup>1</sup>H MRI in an animal myocarditis model using a clinical field strength of 1.5 Tesla. To induce experimental myocarditis, five male rats (weight ~300 g, age ~50 days) were treated with one application per week of doxorubicin (2 mg/kg BW) over a period of six weeks. Three control animals received the identical volume of sodium chloride 0.9% instead. Following week six, all animals received a single 4 ml injection of an 20% oil-in-water perfluorooctylbromide nanoemulsion 24 hours prior to <i>in vivo</i><sup>1</sup>H/<sup>19</sup>F imaging on a 1.5 Tesla MRI. After euthanasia, cardiac histology and immunohistochemistry using CD68/ED1 macrophage antibodies were performed, measuring the inflamed myocardium in <i>μ</i>m<sup>2</sup> for further statistical analysis to compare the extent of the inflammation with the <sup>19</sup>F-MRI signal intensity. All animals treated with doxorubicin showed a specific signal in the myocardium, while no myocardial signal could be detected in the control group. Additionally, the doxorubicin group showed a significantly higher SNR for <sup>19</sup>F and a stronger CD68/ED1 immunhistoreactivity compared to the control group. This proof-of-concept study demonstrates that perfluorocarbon nanoemulsions could be detected in an <i>in vivo</i> experimental myocarditis model at a currently clinically relevant field strength.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4659041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The usefulness of perfluorocarbon nanoemulsions for the imaging of experimental myocarditis has been demonstrated in a high-field 9.4 Tesla MRI scanner. Our proof-of-concept study investigated the imaging capacity of PFC-based 19F/1H MRI in an animal myocarditis model using a clinical field strength of 1.5 Tesla. To induce experimental myocarditis, five male rats (weight ~300 g, age ~50 days) were treated with one application per week of doxorubicin (2 mg/kg BW) over a period of six weeks. Three control animals received the identical volume of sodium chloride 0.9% instead. Following week six, all animals received a single 4 ml injection of an 20% oil-in-water perfluorooctylbromide nanoemulsion 24 hours prior to in vivo1H/19F imaging on a 1.5 Tesla MRI. After euthanasia, cardiac histology and immunohistochemistry using CD68/ED1 macrophage antibodies were performed, measuring the inflamed myocardium in μm2 for further statistical analysis to compare the extent of the inflammation with the 19F-MRI signal intensity. All animals treated with doxorubicin showed a specific signal in the myocardium, while no myocardial signal could be detected in the control group. Additionally, the doxorubicin group showed a significantly higher SNR for 19F and a stronger CD68/ED1 immunhistoreactivity compared to the control group. This proof-of-concept study demonstrates that perfluorocarbon nanoemulsions could be detected in an in vivo experimental myocarditis model at a currently clinically relevant field strength.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics