{"title":"A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction.","authors":"Yongsheng Wang, Yuhao Wu, Hao Xu, Zhen Chen, Jing Gao, ZhiWei Xu, Leixiao Li","doi":"10.1080/0954898X.2023.2213756","DOIUrl":null,"url":null,"abstract":"<p><p>Wind power has been valued by countries for its renewability and cleanness and has become most of the focus of energy development in all countries. However, due to the uncertainty and volatility of wind power generation, making the grid-connected wind power system presents some serious challenges. Improving the accuracy of wind power prediction has become the focus of current research. Therefore, this paper proposes a combined short-term wind power prediction model based on T-LSTNet_markov to improve prediction accuracy. First, perform data cleaning and data preprocessing operations on the original data. Second, forecast using T-LSTNet model in original wind power data. Finally, calculate the error between the forecast value and the actual value. The k-means++ method and Weighted Markov process are used to correct errors and to get the result of the final prediction. The data that are collected from a wind farm in Inner Mongolia Autonomous Region, China, are selected as a case study to demonstrate the effectiveness of the proposed combined models. The empirical results show that the prediction accuracy is further improved after correcting errors.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"34 3","pages":"151-173"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2213756","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Wind power has been valued by countries for its renewability and cleanness and has become most of the focus of energy development in all countries. However, due to the uncertainty and volatility of wind power generation, making the grid-connected wind power system presents some serious challenges. Improving the accuracy of wind power prediction has become the focus of current research. Therefore, this paper proposes a combined short-term wind power prediction model based on T-LSTNet_markov to improve prediction accuracy. First, perform data cleaning and data preprocessing operations on the original data. Second, forecast using T-LSTNet model in original wind power data. Finally, calculate the error between the forecast value and the actual value. The k-means++ method and Weighted Markov process are used to correct errors and to get the result of the final prediction. The data that are collected from a wind farm in Inner Mongolia Autonomous Region, China, are selected as a case study to demonstrate the effectiveness of the proposed combined models. The empirical results show that the prediction accuracy is further improved after correcting errors.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.