Ruina Zhao, Yujie Guan, Yuqi Lu, Ze Ji, Xiang Yin, Weikuan Jia
{"title":"FCOS-LSC: A Novel Model for Green Fruit Detection in a Complex Orchard Environment.","authors":"Ruina Zhao, Yujie Guan, Yuqi Lu, Ze Ji, Xiang Yin, Weikuan Jia","doi":"10.34133/plantphenomics.0069","DOIUrl":null,"url":null,"abstract":"<p><p>To better address the difficulties in designing green fruit recognition techniques in machine vision systems, a new fruit detection model is proposed. This model is an optimization of the FCOS (full convolution one-stage object detection) algorithm, incorporating LSC (level scales, spaces, channels) attention blocks in the network structure, and named FCOS-LSC. The method achieves efficient recognition and localization of green fruit images affected by overlapping occlusions, lighting conditions, and capture angles. Specifically, the improved feature extraction network ResNet50 with added deformable convolution is used to fully extract green fruit feature information. The feature pyramid network (FPN) is employed to fully fuse low-level detail information and high-level semantic information in a cross-connected and top-down connected way. Next, the attention mechanisms are added to each of the 3 dimensions of scale, space (including the height and width of the feature map), and channel of the generated multiscale feature map to improve the feature perception capability of the network. Finally, the classification and regression subnetworks of the model are applied to predict the fruit category and bounding box. In the classification branch, a new positive and negative sample selection strategy is applied to better distinguish supervised signals by designing weights in the loss function to achieve more accurate fruit detection. The proposed FCOS-LSC model has 38.65M parameters, 38.72G floating point operations, and mean average precision of 63.0% and 75.2% for detecting green apples and green persimmons, respectively. In summary, FCOS-LSC outperforms the state-of-the-art models in terms of precision and complexity to meet the accurate and efficient requirements of green fruit recognition using intelligent agricultural equipment. Correspondingly, FCOS-LSC can be used to improve the robustness and generalization of the green fruit detection models.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0069"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355323/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0069","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
To better address the difficulties in designing green fruit recognition techniques in machine vision systems, a new fruit detection model is proposed. This model is an optimization of the FCOS (full convolution one-stage object detection) algorithm, incorporating LSC (level scales, spaces, channels) attention blocks in the network structure, and named FCOS-LSC. The method achieves efficient recognition and localization of green fruit images affected by overlapping occlusions, lighting conditions, and capture angles. Specifically, the improved feature extraction network ResNet50 with added deformable convolution is used to fully extract green fruit feature information. The feature pyramid network (FPN) is employed to fully fuse low-level detail information and high-level semantic information in a cross-connected and top-down connected way. Next, the attention mechanisms are added to each of the 3 dimensions of scale, space (including the height and width of the feature map), and channel of the generated multiscale feature map to improve the feature perception capability of the network. Finally, the classification and regression subnetworks of the model are applied to predict the fruit category and bounding box. In the classification branch, a new positive and negative sample selection strategy is applied to better distinguish supervised signals by designing weights in the loss function to achieve more accurate fruit detection. The proposed FCOS-LSC model has 38.65M parameters, 38.72G floating point operations, and mean average precision of 63.0% and 75.2% for detecting green apples and green persimmons, respectively. In summary, FCOS-LSC outperforms the state-of-the-art models in terms of precision and complexity to meet the accurate and efficient requirements of green fruit recognition using intelligent agricultural equipment. Correspondingly, FCOS-LSC can be used to improve the robustness and generalization of the green fruit detection models.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.