Sudhir Verma , Isabel Y. Moreno , Morgan E. Trapp , Luis Ramirez , Tarsis F. Gesteira , Vivien J. Coulson-Thomas
{"title":"Meibomian gland development: Where, when and how?","authors":"Sudhir Verma , Isabel Y. Moreno , Morgan E. Trapp , Luis Ramirez , Tarsis F. Gesteira , Vivien J. Coulson-Thomas","doi":"10.1016/j.diff.2023.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>The Meibomian gland (MG) is an indispensable adnexal structure of eye that produces meibum, an important defensive component for maintaining ocular homeostasis. Normal development and maintenance of the MGs is required for ocular health since atrophic MGs and disturbances in composition and/or secretion of meibum result in major ocular pathologies, collectively termed as Meibomian gland dysfunction (MGD). Currently available therapies for MGD merely provide symptomatic relief and do not treat the underlying deficiency of the MGs. Hence, a thorough understanding of the timeline of MG development, maturation and aging is required for regenerative purposes along with signaling molecules & pathways controlling proper differentiation of MG lineage in mammalian eye. Understanding the factors that contribute to the development of MGs, developmental abnormalities of MGs, and changes in the quality & quantity of meibum with developing phases of MGs are essential for developing potential treatments for MGD. In this review, we compiled a timeline of events and the factors involved in the structural and functional development of MGs and the associated developmental defects of MGs during development, maturation and aging.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000269","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The Meibomian gland (MG) is an indispensable adnexal structure of eye that produces meibum, an important defensive component for maintaining ocular homeostasis. Normal development and maintenance of the MGs is required for ocular health since atrophic MGs and disturbances in composition and/or secretion of meibum result in major ocular pathologies, collectively termed as Meibomian gland dysfunction (MGD). Currently available therapies for MGD merely provide symptomatic relief and do not treat the underlying deficiency of the MGs. Hence, a thorough understanding of the timeline of MG development, maturation and aging is required for regenerative purposes along with signaling molecules & pathways controlling proper differentiation of MG lineage in mammalian eye. Understanding the factors that contribute to the development of MGs, developmental abnormalities of MGs, and changes in the quality & quantity of meibum with developing phases of MGs are essential for developing potential treatments for MGD. In this review, we compiled a timeline of events and the factors involved in the structural and functional development of MGs and the associated developmental defects of MGs during development, maturation and aging.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.