{"title":"Multimodal Locomotion in a Soft Robot Through Hierarchical Actuation.","authors":"Qifan Yu, Nick Gravish","doi":"10.1089/soro.2022.0198","DOIUrl":null,"url":null,"abstract":"<p><p>Soft and continuum robots present the opportunity for extremely large ranges of motion, which can enable dexterous, adaptive, and multimodal locomotion behaviors. However, as the number of degrees of freedom (DOF) of a robot increases, the number of actuators should also increase to achieve the full actuation potential. This presents a dilemma in mobile soft robot design: physical space and power requirements restrict the number and type of actuators available and may ultimately limit the movement capabilities of soft robots with high-DOF appendages. Restrictions on actuation of continuum appendages ultimately may limit the various movement capabilities of soft robots. In this work, we demonstrate multimodal behaviors in an underwater robot called \"Hexapus.\" A hierarchical actuation design for multiappendage soft robots is presented in which a single high-power motor actuates all appendages for locomotion, while smaller low-power motors augment the shape of each appendage. The flexible appendages are designed to be capable of hyperextension for thrust, and flexion for grasping with a peak pullout force of 32 N. For propulsion, we incorporate an elastic membrane connected across the base of each tentacle, which is stretched slowly by the high-power motor and released rapidly through a slip-gear mechanism. Through this actuation arrangement, Hexapus is capable of underwater locomotion with low cost of transport (COT = 1.44 at 16.5 mm/s) while swimming and a variety of multimodal locomotion behaviors, including swimming, turning, grasping, and crawling, which we demonstrate in experiment.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"21-31"},"PeriodicalIF":6.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0198","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Soft and continuum robots present the opportunity for extremely large ranges of motion, which can enable dexterous, adaptive, and multimodal locomotion behaviors. However, as the number of degrees of freedom (DOF) of a robot increases, the number of actuators should also increase to achieve the full actuation potential. This presents a dilemma in mobile soft robot design: physical space and power requirements restrict the number and type of actuators available and may ultimately limit the movement capabilities of soft robots with high-DOF appendages. Restrictions on actuation of continuum appendages ultimately may limit the various movement capabilities of soft robots. In this work, we demonstrate multimodal behaviors in an underwater robot called "Hexapus." A hierarchical actuation design for multiappendage soft robots is presented in which a single high-power motor actuates all appendages for locomotion, while smaller low-power motors augment the shape of each appendage. The flexible appendages are designed to be capable of hyperextension for thrust, and flexion for grasping with a peak pullout force of 32 N. For propulsion, we incorporate an elastic membrane connected across the base of each tentacle, which is stretched slowly by the high-power motor and released rapidly through a slip-gear mechanism. Through this actuation arrangement, Hexapus is capable of underwater locomotion with low cost of transport (COT = 1.44 at 16.5 mm/s) while swimming and a variety of multimodal locomotion behaviors, including swimming, turning, grasping, and crawling, which we demonstrate in experiment.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.