{"title":"New treatment for osteoarthritis: Gene therapy.","authors":"Xinyu Li, Leyao Shen, Zhenghan Deng, Zeyu Huang","doi":"10.1093/pcmedi/pbad014","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis is a complex degenerative disease that affects the entire joint tissue. Currently, non-surgical treatments for osteoarthritis focus on relieving pain. While end-stage osteoarthritis can be treated with arthroplasty, the health and financial costs associated with surgery have forced the search for alternative non-surgical treatments to delay the progression of osteoarthritis and promote cartilage repair. Unlike traditional treatment, the gene therapy approach allows for long-lasting expression of therapeutic proteins at specific sites. In this review, we summarize the history of gene therapy in osteoarthritis, outlining the common expression vectors (non-viral, viral), the genes delivered (transcription factors, growth factors, inflammation-associated cytokines, non-coding RNAs) and the mode of gene delivery (direct delivery, indirect delivery). We highlight the application and development prospects of the gene editing technology CRISPR/Cas9 in osteoarthritis. Finally, we identify the current problems and possible solutions in the clinical translation of gene therapy for osteoarthritis.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"6 2","pages":"pbad014"},"PeriodicalIF":5.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a6/19/pbad014.PMC10273835.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbad014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis is a complex degenerative disease that affects the entire joint tissue. Currently, non-surgical treatments for osteoarthritis focus on relieving pain. While end-stage osteoarthritis can be treated with arthroplasty, the health and financial costs associated with surgery have forced the search for alternative non-surgical treatments to delay the progression of osteoarthritis and promote cartilage repair. Unlike traditional treatment, the gene therapy approach allows for long-lasting expression of therapeutic proteins at specific sites. In this review, we summarize the history of gene therapy in osteoarthritis, outlining the common expression vectors (non-viral, viral), the genes delivered (transcription factors, growth factors, inflammation-associated cytokines, non-coding RNAs) and the mode of gene delivery (direct delivery, indirect delivery). We highlight the application and development prospects of the gene editing technology CRISPR/Cas9 in osteoarthritis. Finally, we identify the current problems and possible solutions in the clinical translation of gene therapy for osteoarthritis.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.