Hag Ju Lee, Yeseul Heo, Hye-Jin Kim, Ki Ho Baek, Dong-Gyun Yim, Anand Kumar Sethukali, Dongbin Park, Cheorun Jo
{"title":"Bactericidal Effect of Combination of Atmospheric Pressure Plasma and Nisin on Meat Products Inoculated with <i>Escherichia coli</i> O157:H7.","authors":"Hag Ju Lee, Yeseul Heo, Hye-Jin Kim, Ki Ho Baek, Dong-Gyun Yim, Anand Kumar Sethukali, Dongbin Park, Cheorun Jo","doi":"10.5851/kosfa.2022.e73","DOIUrl":null,"url":null,"abstract":"<p><p>This study was conducted to investigate the bactericidal effect of nisin (Nisin) only, atmospheric pressure plasma (APP) only, and a combination of APP and nisin (APP+Nisin) on beef jerky and sliced ham inoculated with <i>Escherichia coli</i> O157:H7, gram-negative bacteria. The bactericidal effect against <i>E. coli</i> O157:H7 and <i>Listeria monocytogenes</i> was confirmed using a nisin solution at a concentration of 0-100 ppm, and APP+Nisin was tested on beef jerky and sliced ham using 100 ppm nisin. Beef jerky and sliced ham were treated with APP for 5 min and 9 min, respectively. In the bacterial solution, 100 ppm nisin out of 0-100 ppm nisin exhibited the highest bactericidal activity against <i>L. monocytogenes</i> (gram-positive bacteria; p<0.05); however, it did not exhibit bactericidal effects against <i>E. coli</i> O157:H7 (gram-negative bacteria). The APP+Nisin exhibited a 100% reduction rate in both <i>E. coli</i> O157:H7 and <i>L. monocytogenes</i> compared to the control group, and was more effective than the Nisin. The APP+Nisin decreased the number of colonies formed by 0.80 and 1.96 Log CFU/g for beef jerky and sliced ham, respectively, compared to the control, and exhibited a higher bactericidal effect compared to the Nisin (p<0.05). These results demonstrate the synergistic bactericidal effect of APP and nisin, providing a possible method to improve the limitations of nisin against gram-negative bacteria. In addition, this technology has the potential to be applied to various meats and meat products to control surface microorganisms.</p>","PeriodicalId":12459,"journal":{"name":"Food Science of Animal Resources","volume":"43 3","pages":"402-411"},"PeriodicalIF":4.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c8/0b/kosfa-43-3-402.PMC10172819.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science of Animal Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5851/kosfa.2022.e73","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
This study was conducted to investigate the bactericidal effect of nisin (Nisin) only, atmospheric pressure plasma (APP) only, and a combination of APP and nisin (APP+Nisin) on beef jerky and sliced ham inoculated with Escherichia coli O157:H7, gram-negative bacteria. The bactericidal effect against E. coli O157:H7 and Listeria monocytogenes was confirmed using a nisin solution at a concentration of 0-100 ppm, and APP+Nisin was tested on beef jerky and sliced ham using 100 ppm nisin. Beef jerky and sliced ham were treated with APP for 5 min and 9 min, respectively. In the bacterial solution, 100 ppm nisin out of 0-100 ppm nisin exhibited the highest bactericidal activity against L. monocytogenes (gram-positive bacteria; p<0.05); however, it did not exhibit bactericidal effects against E. coli O157:H7 (gram-negative bacteria). The APP+Nisin exhibited a 100% reduction rate in both E. coli O157:H7 and L. monocytogenes compared to the control group, and was more effective than the Nisin. The APP+Nisin decreased the number of colonies formed by 0.80 and 1.96 Log CFU/g for beef jerky and sliced ham, respectively, compared to the control, and exhibited a higher bactericidal effect compared to the Nisin (p<0.05). These results demonstrate the synergistic bactericidal effect of APP and nisin, providing a possible method to improve the limitations of nisin against gram-negative bacteria. In addition, this technology has the potential to be applied to various meats and meat products to control surface microorganisms.
期刊介绍:
Food Science of Animal Resources (Food Sci. Anim. Resour.) is an international, peer-reviewed journal publishing original research and review articles on scientific and technological aspects of chemistry, biotechnology, processing, engineering, and microbiology of meat, egg, dairy, and edible insect/worm products.