Xiangpeng Sheng, Zhixiong Xia, Hanting Yang, Ronggui Hu
{"title":"The ubiquitin codes in cellular stress responses.","authors":"Xiangpeng Sheng, Zhixiong Xia, Hanting Yang, Ronggui Hu","doi":"10.1093/procel/pwad045","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":null,"pages":null},"PeriodicalIF":13.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwad045","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
期刊介绍:
Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.