DNA-origami-directed virus capsid polymorphism

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Iris Seitz, Sharon Saarinen, Esa-Pekka Kumpula, Donna McNeale, Eduardo Anaya-Plaza, Vili Lampinen, Vesa P. Hytönen, Frank Sainsbury, Jeroen J. L. M. Cornelissen, Veikko Linko, Juha T. Huiskonen, Mauri A. Kostiainen
{"title":"DNA-origami-directed virus capsid polymorphism","authors":"Iris Seitz, Sharon Saarinen, Esa-Pekka Kumpula, Donna McNeale, Eduardo Anaya-Plaza, Vili Lampinen, Vesa P. Hytönen, Frank Sainsbury, Jeroen J. L. M. Cornelissen, Veikko Linko, Juha T. Huiskonen, Mauri A. Kostiainen","doi":"10.1038/s41565-023-01443-x","DOIUrl":null,"url":null,"abstract":"Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA–DNA origami structures to pave way for next-generation cargo protection and targeting strategies. DNA and RNA origami nanostructures direct the size, shape and topology of different virus capsids in a user-defined manner while shielding encapsulated origamis from degradation.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"18 10","pages":"1205-1212"},"PeriodicalIF":38.1000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01443-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA–DNA origami structures to pave way for next-generation cargo protection and targeting strategies. DNA and RNA origami nanostructures direct the size, shape and topology of different virus capsids in a user-defined manner while shielding encapsulated origamis from degradation.

Abstract Image

DNA折纸引导的病毒衣壳多态性。
病毒衣壳可以采用各种几何形状,最典型的特征是二十面体或螺旋对称性。重要的是,精确控制病毒衣壳的大小和形状将有利于开发新的疫苗和递送系统。然而,目前以可编程方式指导组装过程的工具是极其难以捉摸的。在这里,我们介绍了一种模块化方法,通过证明DNA折纸引导的单个蛋白质亚基衣壳的多态性。我们通过使用用户定义的DNA折纸纳米结构作为结合和组装平台来实现对衣壳形状、大小和拓扑结构的控制,这些结构被有效地封装在衣壳内。此外,所获得的病毒衣壳涂层可以保护包封的DNA折纸不被降解。此外,我们的方法不仅限于单一类型的囊泡,还可以应用于RNA-DNA折纸结构,为下一代货物保护和靶向策略铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信