Gene Therapies for Retinitis Pigmentosa that Target Glucose Metabolism.

IF 7.8 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yunlu Xue, Constance L Cepko
{"title":"Gene Therapies for Retinitis Pigmentosa that Target Glucose Metabolism.","authors":"Yunlu Xue, Constance L Cepko","doi":"10.1101/cshperspect.a041289","DOIUrl":null,"url":null,"abstract":"<p><p>Retinitis pigmentosa is a blinding disease wherein rod photoreceptors are affected first, due to the expression of a disease gene, leading to the loss of dim light vision. In many cases, cones do not express the disease gene, yet they are also affected and eventually die, typically after most of the rods in their neighborhood have died. The cause of secondary cone death is unclear. Photoreceptors are one of the most energy-demanding cell types in the body and consume a high amount of glucose. At an early stage of degeneration, the cones appear to have a shortage of glucose to fuel their metabolism. This review focuses on gene therapy approaches that address this potential metabolic shortcoming.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065158/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041289","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Retinitis pigmentosa is a blinding disease wherein rod photoreceptors are affected first, due to the expression of a disease gene, leading to the loss of dim light vision. In many cases, cones do not express the disease gene, yet they are also affected and eventually die, typically after most of the rods in their neighborhood have died. The cause of secondary cone death is unclear. Photoreceptors are one of the most energy-demanding cell types in the body and consume a high amount of glucose. At an early stage of degeneration, the cones appear to have a shortage of glucose to fuel their metabolism. This review focuses on gene therapy approaches that address this potential metabolic shortcoming.

针对葡萄糖代谢的视网膜色素变性基因疗法。
色素性视网膜炎是一种致盲疾病,由于疾病基因的表达,杆状光感受器首先受到影响,从而导致暗光视力丧失。在许多情况下,视锥并不表达疾病基因,但也会受到影响并最终死亡,通常是在其附近的大部分杆状感光体死亡之后。继发性视锥死亡的原因尚不清楚。感光细胞是人体中能量需求最大的细胞类型之一,需要消耗大量葡萄糖。在退化的早期阶段,视锥似乎缺乏葡萄糖来促进其新陈代谢。本综述重点介绍解决这一潜在代谢缺陷的基因治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cold Spring Harbor perspectives in medicine
Cold Spring Harbor perspectives in medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
14.30
自引率
1.90%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Medicine is a monthly online publication comprising reviews on different aspects of a variety of diseases, covering everything from the molecular and cellular bases of disease to translational medicine and new therapeutic strategies. Cold Spring Harbor Perspectives in Medicine is thus unmatched in its depth of coverage and represents an essential source where readers can find informed surveys and critical discussion of advances in molecular medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信