Artificial Intelligence in Ventricular Arrhythmias and Sudden Death.

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Lauri Holmström, Frank Zijun Zhang, David Ouyang, Damini Dey, Piotr J Slomka, Sumeet S Chugh
{"title":"Artificial Intelligence in Ventricular Arrhythmias and Sudden Death.","authors":"Lauri Holmström,&nbsp;Frank Zijun Zhang,&nbsp;David Ouyang,&nbsp;Damini Dey,&nbsp;Piotr J Slomka,&nbsp;Sumeet S Chugh","doi":"10.15420/aer.2022.42","DOIUrl":null,"url":null,"abstract":"<p><p>Sudden cardiac arrest due to lethal ventricular arrhythmias is a major cause of mortality worldwide and results in more years of potential life lost than any individual cancer. Most of these sudden cardiac arrest events occur unexpectedly in individuals who have not been identified as high-risk due to the inadequacy of current risk stratification tools. Artificial intelligence tools are increasingly being used to solve complex problems and are poised to help with this major unmet need in the field of clinical electrophysiology. By leveraging large and detailed datasets, artificial intelligence-based prediction models have the potential to enhance the risk stratification of lethal ventricular arrhythmias. This review presents a synthesis of the published literature and a discussion of future directions in this field.</p>","PeriodicalId":8412,"journal":{"name":"Arrhythmia & Electrophysiology Review","volume":"12 ","pages":"e17"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/89/aer-12-e17.PMC10345967.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arrhythmia & Electrophysiology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15420/aer.2022.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Sudden cardiac arrest due to lethal ventricular arrhythmias is a major cause of mortality worldwide and results in more years of potential life lost than any individual cancer. Most of these sudden cardiac arrest events occur unexpectedly in individuals who have not been identified as high-risk due to the inadequacy of current risk stratification tools. Artificial intelligence tools are increasingly being used to solve complex problems and are poised to help with this major unmet need in the field of clinical electrophysiology. By leveraging large and detailed datasets, artificial intelligence-based prediction models have the potential to enhance the risk stratification of lethal ventricular arrhythmias. This review presents a synthesis of the published literature and a discussion of future directions in this field.

Abstract Image

Abstract Image

Abstract Image

人工智能在室性心律失常和猝死中的应用。
致死性室性心律失常引起的心脏骤停是世界范围内死亡的主要原因,其导致的潜在寿命损失比任何一种癌症都要多。由于目前风险分层工具的不足,这些心脏骤停事件大多意外发生在未被确定为高风险的个体中。人工智能工具越来越多地被用于解决复杂问题,并准备帮助解决临床电生理学领域的这一主要未满足的需求。通过利用大量详细的数据集,基于人工智能的预测模型有可能增强致死性室性心律失常的风险分层。本文综述了已发表的文献,并对该领域的未来发展方向进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arrhythmia & Electrophysiology Review
Arrhythmia & Electrophysiology Review CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
5.10
自引率
6.70%
发文量
22
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信